Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
Gene Ther. 2010 Sep;17(9):1085-97. doi: 10.1038/gt.2010.55. Epub 2010 May 13.
We have developed a multi-disciplinary approach combining molecular biology, delivery technology, combinatorial chemistry and reversible masking to create improved systemic, targeted delivery of plasmid DNA while avoiding nonspecific uptake in vivo. We initially used a well-characterized model targeting the asialolglycoprotein receptor in the liver. Using our bilamellar invaginated vesicle (BIV) liposomal delivery system with reversible masking, we increased expression in the liver by 76-fold, nearly equaling expression in first-pass organs using non-targeted complexes, with no expression in other organs. The same technology was then applied to efficiently target delivery to a human tumor microenvironment model. We achieved efficient, targeted delivery by attachment of specific targeting ligands to the surface of our BIV complexes in conjunction with reversible masking to bypass nonspecific tissues and organs. We identified ligands that target a human tumor microenvironment created in vitro by co-culturing primary human endothelial cells with human lung or pancreatic cancer cells. The model was confirmed by increased expression of tumor endothelial phenotypes including CD31 and vascular endothelial growth factor-A, and prolonged survival of endothelial capillary-like structures. The co-cultures were used for high-throughput screening of a specialized small molecule library to identify ligands specific for human tumor-associated endothelial cells in vitro. We identified small molecules that enhanced the transfection efficiency of tumor-associated endothelial cells, but not normal human endothelial cells or cancer cells. Intravenous (i.v.) injection of our targeted, reversibly masked complexes into mice, bearing human pancreatic tumor and endothelial cells, specifically increased transfection to this tumor microenvironment approximately 200-fold. Efficacy studies using our optimized targeted delivery of a plasmid encoding thrombospondin-1 eliminated tumors completely after five i.v. injections administered once every week.
我们开发了一种多学科方法,结合分子生物学、传递技术、组合化学和可逆掩蔽技术,以创建改进的系统、靶向质粒 DNA 的传递,同时避免体内的非特异性摄取。我们最初使用了一种经过充分表征的模型,针对肝脏中的去唾液酸糖蛋白受体。使用我们的双层内陷囊泡(BIV)脂质体传递系统和可逆掩蔽,我们将肝脏中的表达提高了 76 倍,几乎与非靶向复合物在首过器官中的表达相当,而在其他器官中没有表达。然后,我们将相同的技术应用于有效地靶向人类肿瘤微环境模型的传递。我们通过将特定的靶向配体附着到我们的 BIV 复合物的表面,同时使用可逆掩蔽来绕过非特异性组织和器官,从而实现高效、靶向的传递。我们确定了配体,可以靶向体外共培养原代人内皮细胞与人肺或胰腺癌细胞的人类肿瘤微环境。该模型通过增加肿瘤内皮表型的表达得到证实,包括 CD31 和血管内皮生长因子-A,以及内皮毛细血管样结构的存活时间延长。共培养物用于高通量筛选专门的小分子文库,以鉴定体外与人肿瘤相关的内皮细胞特异性的配体。我们鉴定了小分子,这些小分子增强了与肿瘤相关的内皮细胞的转染效率,但对正常的人内皮细胞或癌细胞没有影响。将我们靶向、可逆掩蔽的复合物静脉内(i.v.)注射到携带人胰腺肿瘤和内皮细胞的小鼠中,特异性地将转染增加到该肿瘤微环境中约 200 倍。使用我们优化的靶向传递编码血栓素-1 的质粒的疗效研究,在五次 i.v.注射后,每周一次,完全消除了肿瘤。