Suppr超能文献

树突棘中肌动蛋白动力学的加速器、制动器和齿轮

Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines.

作者信息

Pontrello Crystal G, Ethell Iryna M

机构信息

Biomedical Sciences Division and Neuroscience program, University of California Riverside, USA.

出版信息

Open Neurosci J. 2009 Jan 1;3:67-86. doi: 10.2174/1874082000903020067.

Abstract

Dendritic spines are actin-rich structures that accommodate the postsynaptic sites of most excitatory synapses in the brain. Although dendritic spines form and mature as synaptic connections develop, they remain plastic even in the adult brain, where they can rapidly grow, change, or collapse in response to normal physiological changes in synaptic activity that underlie learning and memory. Pathological stimuli can adversely affect dendritic spine shape and number, and this is seen in neurodegenerative disorders and some forms of mental retardation and autism as well. Many of the molecular signals that control these changes in dendritic spines act through the regulation of filamentous actin (F-actin), some through direct interaction with actin, and others via downstream effectors. For example, cortactin, cofilin, and gelsolin are actin-binding proteins that directly regulate actin dynamics in dendritic spines. Activities of these proteins are precisely regulated by intracellular signaling events that control their phosphorylation state and localization. In this review, we discuss how actin-regulating proteins maintain the balance between F-actin assembly and disassembly that is needed to stabilize mature dendritic spines, and how changes in their activities may lead to rapid remodeling of dendritic spines.

摘要

树突棘是富含肌动蛋白的结构,它们容纳了大脑中大多数兴奋性突触的突触后位点。尽管树突棘随着突触连接的发展而形成并成熟,但即使在成人大脑中它们仍然具有可塑性,在成人大脑中,它们可以响应学习和记忆所依赖的突触活动的正常生理变化而迅速生长、改变或消失。病理刺激会对树突棘的形状和数量产生不利影响,在神经退行性疾病以及某些形式的智力迟钝和自闭症中也可见到这种情况。许多控制树突棘这些变化的分子信号通过调节丝状肌动蛋白(F-肌动蛋白)起作用,一些通过与肌动蛋白的直接相互作用起作用,另一些则通过下游效应器起作用。例如,皮层肌动蛋白、丝切蛋白和凝溶胶蛋白是直接调节树突棘中肌动蛋白动力学的肌动蛋白结合蛋白。这些蛋白质的活性受到控制其磷酸化状态和定位的细胞内信号事件的精确调节。在这篇综述中,我们讨论了肌动蛋白调节蛋白如何维持稳定成熟树突棘所需的F-肌动蛋白组装和解聚之间的平衡,以及它们活性的变化如何导致树突棘的快速重塑。

相似文献

1
Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines.
Open Neurosci J. 2009 Jan 1;3:67-86. doi: 10.2174/1874082000903020067.
2
Abl2:Cortactin Interactions Regulate Dendritic Spine Stability via Control of a Stable Filamentous Actin Pool.
J Neurosci. 2021 Apr 7;41(14):3068-3081. doi: 10.1523/JNEUROSCI.2472-20.2021. Epub 2021 Feb 23.
3
The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines.
Brain Res. 2014 Jul 21;1573:1-16. doi: 10.1016/j.brainres.2014.05.024. Epub 2014 May 20.
6
Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity.
J Neurosci. 2016 May 11;36(19):5299-313. doi: 10.1523/JNEUROSCI.2649-15.2016.
7
Role of Drebrin in Synaptic Plasticity.
Adv Exp Med Biol. 2017;1006:183-201. doi: 10.1007/978-4-431-56550-5_11.
8
Cofilin under control of β-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning.
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):E442-51. doi: 10.1073/pnas.1118803109. Epub 2012 Jan 30.
9
Autism-related KLHL17 and SYNPO act in concert to control activity-dependent dendritic spine enlargement and the spine apparatus.
PLoS Biol. 2023 Aug 31;21(8):e3002274. doi: 10.1371/journal.pbio.3002274. eCollection 2023 Aug.
10
Actin in dendritic spines: connecting dynamics to function.
J Cell Biol. 2010 May 17;189(4):619-29. doi: 10.1083/jcb.201003008. Epub 2010 May 10.

引用本文的文献

3
Stress Elicits Contrasting Effects on Rac1-Cofilin Signaling in the Hippocampus and Amygdala.
Front Mol Neurosci. 2022 May 3;15:880382. doi: 10.3389/fnmol.2022.880382. eCollection 2022.
5
Autism candidate gene DIP2A regulates spine morphogenesis via acetylation of cortactin.
PLoS Biol. 2019 Oct 10;17(10):e3000461. doi: 10.1371/journal.pbio.3000461. eCollection 2019 Oct.
7
A Synaptic Perspective of Fragile X Syndrome and Autism Spectrum Disorders.
Neuron. 2019 Mar 20;101(6):1070-1088. doi: 10.1016/j.neuron.2019.02.041.
8
Rho-kinase inhibition has antidepressant-like efficacy and expedites dendritic spine pruning in adolescent mice.
Neurobiol Dis. 2019 Apr;124:520-530. doi: 10.1016/j.nbd.2018.12.015. Epub 2018 Dec 26.

本文引用的文献

5
Cytoskeletal pathologies of Alzheimer disease.
Cell Motil Cytoskeleton. 2009 Aug;66(8):635-49. doi: 10.1002/cm.20388.
6
Molecular mechanics of the alpha-actinin rod domain: bending, torsional, and extensional behavior.
PLoS Comput Biol. 2009 May;5(5):e1000389. doi: 10.1371/journal.pcbi.1000389. Epub 2009 May 15.
7
Combinatorial morphogenesis of dendritic spines and filopodia by SPAR and alpha-actinin2.
Biochem Biophys Res Commun. 2009 Jun 19;384(1):55-60. doi: 10.1016/j.bbrc.2009.04.069. Epub 2009 Apr 23.
8
Sleep-dependent gene expression in the hippocampus and prefrontal cortex following long-term potentiation.
Physiol Behav. 2009 Aug 4;98(1-2):44-52. doi: 10.1016/j.physbeh.2009.04.010. Epub 2009 Apr 20.
9
10
Fatigue reversibly reduced cortical and hippocampal dendritic spines concurrent with compromise of motor endurance and spatial memory.
Neuroscience. 2009 Jul 21;161(4):1104-13. doi: 10.1016/j.neuroscience.2009.04.022. Epub 2009 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验