Bertling Enni, Englund Jonas, Minkeviciene Rimante, Koskinen Mikko, Segerstråle Mikael, Castrén Eero, Taira Tomi, Hotulainen Pirta
Neuroscience Center and Minerva Institute for Medical Research, 00290 Helsinki, Finland, and.
Neuroscience Center and Department of Biosciences, Physiology and Neuroscience, and.
J Neurosci. 2016 May 11;36(19):5299-313. doi: 10.1523/JNEUROSCI.2649-15.2016.
Rapid reorganization and stabilization of the actin cytoskeleton in dendritic spines enables cellular processes underlying learning, such as long-term potentiation (LTP). Dendritic spines are enriched in exceptionally short and dynamic actin filaments, but the studies so far have not revealed the molecular mechanisms underlying the high actin dynamics in dendritic spines. Here, we show that actin in dendritic spines is dynamically phosphorylated at tyrosine-53 (Y53) in rat hippocampal and cortical neurons. Our findings show that actin phosphorylation increases the turnover rate of actin filaments and promotes the short-term dynamics of dendritic spines. During neuronal maturation, actin phosphorylation peaks at the first weeks of morphogenesis, when dendritic spines form, and the amount of Y53-phosphorylated actin decreases when spines mature and stabilize. Induction of LTP transiently increases the amount of phosphorylated actin and LTP induction is deficient in neurons expressing mutant actin that mimics phosphorylation. Actin phosphorylation provides a molecular mechanism to maintain the high actin dynamics in dendritic spines during neuronal development and to induce fast reorganization of the actin cytoskeleton in synaptic plasticity. In turn, dephosphorylation of actin is required for the stabilization of actin filaments that is necessary for proper dendritic spine maturation and LTP maintenance.
Dendritic spines are small protrusions from neuronal dendrites where the postsynaptic components of most excitatory synapses reside. Precise control of dendritic spine morphology and density is critical for normal brain function. Accordingly, aberrant spine morphology is linked to many neurological diseases. The actin cytoskeleton is a structural element underlying the proper morphology of dendritic spines. Therefore, defects in the regulation of the actin cytoskeleton in neurons have been implicated in neurological diseases. Here, we revealed a novel mechanism for regulating neuronal actin cytoskeleton that explains the specific organization and dynamics of actin in spines. The better we understand the regulation of the dendritic spine morphology, the better we understand what goes wrong in neurological diseases.
树突棘中肌动蛋白细胞骨架的快速重组和稳定化支持了学习等细胞过程,如长时程增强(LTP)。树突棘富含异常短且动态的肌动蛋白丝,但迄今为止的研究尚未揭示树突棘中肌动蛋白高动态性背后的分子机制。在这里,我们表明大鼠海马和皮质神经元树突棘中的肌动蛋白在酪氨酸53(Y53)处发生动态磷酸化。我们的研究结果表明,肌动蛋白磷酸化增加了肌动蛋白丝的周转速率,并促进了树突棘的短期动态变化。在神经元成熟过程中,肌动蛋白磷酸化在形态发生的第一周达到峰值,此时树突棘形成,而当树突棘成熟并稳定时,Y53磷酸化肌动蛋白的量会减少。LTP的诱导会短暂增加磷酸化肌动蛋白的量,而在表达模拟磷酸化的突变肌动蛋白的神经元中,LTP诱导存在缺陷。肌动蛋白磷酸化提供了一种分子机制,以在神经元发育过程中维持树突棘中肌动蛋白的高动态性,并在突触可塑性中诱导肌动蛋白细胞骨架的快速重组。反过来,肌动蛋白的去磷酸化对于肌动蛋白丝的稳定是必需的,而这对于树突棘的正常成熟和LTP维持是必要的。
树突棘是神经元树突上的小突起,大多数兴奋性突触的突触后成分位于此处。对树突棘形态和密度的精确控制对于正常脑功能至关重要。因此,异常的树突棘形态与许多神经疾病有关。肌动蛋白细胞骨架是树突棘正常形态的结构基础。因此,神经元中肌动蛋白细胞骨架调节的缺陷与神经疾病有关。在这里,我们揭示了一种调节神经元肌动蛋白细胞骨架的新机制,该机制解释了树突棘中肌动蛋白的特定组织和动态变化。我们对树突棘形态调节的理解越好,就越能理解神经疾病中出了什么问题。