NSF Nanoscale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA.
Nano Lett. 2010 Jun 9;10(6):1991-7. doi: 10.1021/nl1008019.
We propose and demonstrate efficiently molding surface plasmon polaritons (SPPs) based on transformation optics. SPPs are surface modes of electromagnetic waves tightly bound at metal-dielectric interfaces, which allow us to scale optics beyond the diffraction limit. Taking advantage of transformation optics, here we show that the propagation of SPPs can be manipulated in a prescribed manner by careful control of the dielectric material properties adjacent to a metal. Since the metal properties are completely unaltered, this methodology provides a practical way for routing light at very small scales. For instance, our approach enables SPPs to travel at uneven and curved surfaces over a broad wavelength range, where SPPs would normally suffer significant scattering losses. In addition, a plasmonic 180 degrees waveguide bend and a plasmonic Luneburg lens with simple designs are presented. The unique design flexibility of the transformational plasmon optics introduced here may open a new door to nano optics and downscaling of photonic circuits.
我们提出并展示了一种基于变换光学的高效表面等离激元(SPP)成型方法。SPP 是电磁波在金属-介质界面上紧密束缚的表面模式,使我们能够超越衍射极限进行光学缩放。利用变换光学,我们展示了通过仔细控制金属附近的介电材料特性,可以以预定的方式控制 SPP 的传播。由于金属特性完全不变,这种方法为在非常小的尺度上进行光路提供了一种实用的方法。例如,我们的方法使得 SPP 能够在宽波长范围内在不平坦和弯曲的表面上传播,而 SPP 通常会在此处遭受严重的散射损耗。此外,还提出了一种具有简单设计的等离子体 180 度波导弯曲和等离子体 Luneburg 透镜。这里介绍的变换等离子体光学的独特设计灵活性可能为纳米光学和光子电路的小型化开辟新的途径。