Teng Hanchao, Chen Na, Hu Hai, García de Abajo F Javier, Dai Qing
CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Nat Commun. 2024 May 25;15(1):4463. doi: 10.1038/s41467-024-48318-w.
Polaritons are well-established carriers of light, electrical signals, and even heat at the nanoscale in the setting of on-chip devices. However, the goal of achieving practical polaritonic manipulation over small distances deeply below the light diffraction limit remains elusive. Here, we implement nanoscale polaritonic in-plane steering and cloaking in a low-loss atomically layered van der Waals (vdW) insulator, α-MoO, comprising building blocks of customizable stacked and assembled structures. Each block contributes specific characteristics that allow us to steer polaritons along the desired trajectories. Our results introduce a natural materials-based approach for the comprehensive manipulation of nanoscale optical fields, advancing research in the vdW polaritonics domain and on-chip nanophotonic circuits.
极化激元是片上器件环境中纳米尺度下光、电信号甚至热量的成熟载体。然而,在远低于光衍射极限的小距离上实现实际的极化激元操控这一目标仍然难以实现。在此,我们在一种低损耗的原子层范德华(vdW)绝缘体α-MoO₃中实现了纳米尺度的极化激元面内转向和隐身,该绝缘体由可定制的堆叠和组装结构组成。每个结构块都具有特定特性,使我们能够沿着所需轨迹引导极化激元。我们的结果引入了一种基于天然材料的方法来全面操控纳米尺度光场,推动了范德华极化激元领域和片上纳米光子电路的研究。