Cui Zhenyang, Gong Youning, Yu Wenzhi, Xia Sihao, He Zhiwei, Tang Xingyu, Zheng Bin, Wang Huaping, Ma Weiliang, Zhang Yupeng, Chen Hongsheng, Wu Yingjie
State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, China.
Nat Commun. 2025 Aug 20;16(1):7750. doi: 10.1038/s41467-025-63097-8.
Planar polaritonic lenses, achieved by precisely controlling interface polaritons, hold significant promise for subwavelength light focusing. While most existing designs rely on polariton interference or refraction, creating gradient-index polaritonic lenses remains a substantial challenge due to the lack of practical and cost-effective fabrication methods. Here, we introduce a lithography-free approach for producing polaritonic lenses with gradient effective refractive indices by engineering the dielectric environment of polaritons. This method involves in situ transformation of polymer microspheres into spherical caps through controlled melting, allowing the fabrication of polaritonic Luneburg lenses with focal spots as small as λ/18, where λ is the free-space wavelength. Our approach could also apply to other gradient-index polaritonic lenses, such as Maxwell fisheye lenses and Mikaelian lenses, based on a wide range of in-plane isotropic polariton modes. By circumventing traditional nanofabrication constraints, this versatile and cost-effective technique offers a promising platform for developing polaritonic devices, which are essential for future polaritonic systems and integrated circuits.
通过精确控制界面极化激元实现的平面极化激元透镜,在亚波长光聚焦方面具有巨大潜力。虽然现有的大多数设计依赖于极化激元干涉或折射,但由于缺乏实用且经济高效的制造方法,制造梯度折射率极化激元透镜仍然是一项重大挑战。在此,我们介绍一种无需光刻的方法,通过设计极化激元的介电环境来制造具有梯度有效折射率的极化激元透镜。该方法涉及通过控制熔化将聚合物微球原位转化为球冠,从而能够制造出焦点小至λ/18(其中λ为自由空间波长)的极化激元鲁内堡透镜。基于广泛的面内各向同性极化激元模式,我们的方法还可应用于其他梯度折射率极化激元透镜,如麦克斯韦鱼眼透镜和米卡连透镜。通过规避传统纳米制造的限制,这种通用且经济高效的技术为开发极化激元器件提供了一个有前景的平台,而极化激元器件对于未来的极化激元系统和集成电路至关重要。