Department of Aeronautics and Astronautics, 496 Lomita Mall, Stanford University, Stanford, CA 94305, USA.
Bone. 2010 Aug;47(2):248-55. doi: 10.1016/j.bone.2010.05.004. Epub 2010 May 11.
Astronauts are exposed to both musculoskeletal disuse and heavy ion radiation in space. Disuse alters the magnitude and direction of forces placed upon the skeleton causing bone remodeling, while energy deposited by ionizing radiation causes free radical formation and can lead to DNA strand breaks and oxidative damage to tissues. Radiation and disuse each result in a net loss of mineralized tissue in the adult, although the combined effects, subsequent consequences for mechanical properties and potential for recovery may differ. First, we examined how a high dose (2 Gy) of heavy ion radiation ((56)Fe) causes loss of mineralized tissue in the lumbar vertebrae of skeletally mature (4 months old), male, C57BL/6 mice using microcomputed tomography and determined the influence of structural changes on mechanical properties using whole bone compression tests and finite element analyses. Next, we tested if a low dose (0.5 Gy) of heavy particle radiation prevents skeletal recovery from a 14-day period of hindlimb unloading. Irradiation with a high dose of (56)Fe (2 Gy) caused bone loss (-14%) in the cancellous-rich centrum of the fourth lumbar vertebra (L4) 1 month later, increased trabecular stresses (+27%), increased the propensity for trabecular buckling and shifted stresses to the cortex. As expected, hindlimb unloading (14 days) alone adversely affected microarchitectural and mechanical stiffness of lumbar vertebrae, although the reduction in yield force was not statistically significant (-17%). Irradiation with a low dose of (56)Fe (0.5 Gy) did not affect vertebrae in normally loaded mice, but significantly reduced compressive yield force in vertebrae of unloaded mice relative to sham-irradiated controls (-24%). Irradiation did not impair the recovery of trabecular bone volume fraction that occurs after hindlimb unloaded mice are released to ambulate normally, although microarchitectural differences persisted 28 days later (96% increase in ratio of rod- to plate-like trabeculae). In summary, (56)Fe irradiation (0.5 Gy) of unloaded mice contributed to a reduction in compressive strength and partially prevented recovery of cancellous microarchitecture from adaptive responses of lumbar vertebrae to skeletal unloading. Thus, irradiation with heavy ions may accelerate or worsen the loss of skeletal integrity triggered by musculoskeletal disuse.
宇航员在太空中既会遭受肌肉骨骼废用,又会遭受重离子辐射。废用会改变骨骼所受力量的大小和方向,导致骨重塑,而电离辐射所沉积的能量会导致自由基的形成,并可能导致 DNA 链断裂和组织的氧化损伤。辐射和废用都会导致成年个体的矿化组织净损失,尽管两者的综合影响、对机械性能的后续影响以及恢复的可能性可能有所不同。首先,我们使用微计算机断层扫描检查了高剂量(2 Gy)重离子辐射(56Fe)如何导致骨骼成熟(4 个月大)的雄性 C57BL/6 小鼠腰椎的矿化组织损失,并使用全骨压缩试验和有限元分析确定了结构变化对机械性能的影响。接下来,我们测试了低剂量(0.5 Gy)重粒子辐射是否可以防止骨骼在 14 天的后肢去负荷后恢复。4 个月大的雄性 C57BL/6 小鼠的第四腰椎(L4)松质骨丰富的中心部位接受 2 Gy 的 56Fe 高剂量照射 1 个月后,骨丢失(-14%),小梁骨的应力增加(+27%),小梁骨更容易发生屈曲,并将应力转移到皮质骨。正如预期的那样,单独的后肢去负荷(14 天)对腰椎的微结构和力学刚度产生了不利影响,尽管屈服力的降低没有统计学意义(-17%)。56Fe 的低剂量(0.5 Gy)照射对正常负重的小鼠的椎体没有影响,但与假照射对照组相比,显著降低了去负荷小鼠椎体的压缩屈服力(-24%)。后肢去负荷小鼠恢复正常活动后,56Fe 照射并没有损害小梁骨体积分数的恢复,但 28 天后微结构差异仍然存在(杆状小梁与板状小梁的比例增加 96%)。总之,未负重的小鼠的 56Fe 照射(0.5 Gy)导致压缩强度降低,并部分阻止了腰椎骨骼对后肢去负荷的适应性反应所导致的松质骨微结构的恢复。因此,重离子照射可能会加速或加剧由肌肉骨骼废用引起的骨骼完整性的丧失。
J Appl Physiol (1985). 2009-10-29
J Bone Miner Res. 2007-1
Front Cell Dev Biol. 2022-4-12
J Environ Sci Health C Toxicol Carcinog. 2021
NPJ Microgravity. 2021-2-15
NPJ Microgravity. 2019-6-4