Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.
J Biol Chem. 2010 Jul 23;285(30):23251-64. doi: 10.1074/jbc.M110.113027. Epub 2010 May 13.
Fructosyltransferases catalyze the transfer of a fructose unit from one sucrose/fructan to another and are engaged in the production of fructooligosaccharide/fructan. The enzymes belong to the glycoside hydrolase family 32 (GH32) with a retaining catalytic mechanism. Here we describe the crystal structures of recombinant fructosyltransferase (AjFT) from Aspergillus japonicus CB05 and its mutant D191A complexes with various donor/acceptor substrates, including sucrose, 1-kestose, nystose, and raffinose. This is the first structure of fructosyltransferase of the GH32 with a high transfructosylation activity. The structure of AjFT comprises two domains with an N-terminal catalytic domain containing a five-blade beta-propeller fold linked to a C-terminal beta-sandwich domain. Structures of various mutant AjFT-substrate complexes reveal complete four substrate-binding subsites (-1 to +3) in the catalytic pocket with shapes and characters distinct from those of clan GH-J enzymes. Residues Asp-60, Asp-191, and Glu-292 that are proposed for nucleophile, transition-state stabilizer, and general acid/base catalyst, respectively, govern the binding of the terminal fructose at the -1 subsite and the catalytic reaction. Mutants D60A, D191A, and E292A completely lost their activities. Residues Ile-143, Arg-190, Glu-292, Glu-318, and His-332 combine the hydrophobic Phe-118 and Tyr-369 to define the +1 subsite for its preference of fructosyl and glucosyl moieties. Ile-143 and Gln-327 define the +2 subsite for raffinose, whereas Tyr-404 and Glu-405 define the +2 and +3 subsites for inulin-type substrates with higher structural flexibilities. Structural geometries of 1-kestose, nystose and raffinose are different from previous data. All results shed light on the catalytic mechanism and substrate recognition of AjFT and other clan GH-J fructosyltransferases.
果糖基转移酶催化果糖单元从一个蔗糖/果聚糖转移到另一个,并参与低聚果糖/果聚糖的生产。这些酶属于糖苷水解酶家族 32(GH32),具有保留的催化机制。在这里,我们描述了来自 Aspergillus japonicus CB05 的重组果糖基转移酶(AjFT)及其突变体 D191A 与各种供体/受体底物(包括蔗糖、1-蔗果三糖、棉子糖和水苏糖)的复合物的晶体结构。这是第一个具有高转果糖活性的 GH32 果糖基转移酶的结构。AjFT 的结构由两个结构域组成,一个包含五叶β-桨叶折叠的 N 端催化结构域与一个 C 端β-三明治结构域相连。各种突变体 AjFT-底物复合物的结构揭示了催化口袋中完整的四个底物结合亚位点(-1 到+3),其形状和特征与 clan GH-J 酶不同。假定为亲核试剂、过渡态稳定剂和广义酸碱催化剂的残基 Asp-60、Asp-191 和 Glu-292 分别控制末端果糖在-1 亚位点的结合和催化反应。突变体 D60A、D191A 和 E292A 完全失去了活性。残基 Ile-143、Arg-190、Glu-292、Glu-318 和 His-332 将疏水性的 Phe-118 和 Tyr-369 结合起来,定义了+1 亚位点,以优先结合果糖和葡萄糖部分。Ile-143 和 Gln-327 定义了棉子糖的+2 亚位点,而 Tyr-404 和 Glu-405 则定义了菊粉型底物的+2 和+3 亚位点,这些底物具有更高的结构灵活性。1-蔗果三糖、棉子糖和水苏糖的结构几何形状与以前的数据不同。所有结果都阐明了 AjFT 和其他 clan GH-J 果糖基转移酶的催化机制和底物识别。
Biosci Biotechnol Biochem. 2017-9
Int J Biol Macromol. 2024-10
Appl Biochem Biotechnol. 2016-6
Acta Crystallogr D Struct Biol. 2023-2-1
Biotechnol Rep (Amst). 2020-9-1
Methods Enzymol. 1997
Bioinformatics. 2008-12-1
Biotechnol Lett. 2008-11