文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

曲霉属日本变种果糖基转移酶与供体/受体底物复合物的晶体结构揭示了催化活性部位的完整亚位点。

Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis.

机构信息

Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.

出版信息

J Biol Chem. 2010 Jul 23;285(30):23251-64. doi: 10.1074/jbc.M110.113027. Epub 2010 May 13.


DOI:10.1074/jbc.M110.113027
PMID:20466731
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2906318/
Abstract

Fructosyltransferases catalyze the transfer of a fructose unit from one sucrose/fructan to another and are engaged in the production of fructooligosaccharide/fructan. The enzymes belong to the glycoside hydrolase family 32 (GH32) with a retaining catalytic mechanism. Here we describe the crystal structures of recombinant fructosyltransferase (AjFT) from Aspergillus japonicus CB05 and its mutant D191A complexes with various donor/acceptor substrates, including sucrose, 1-kestose, nystose, and raffinose. This is the first structure of fructosyltransferase of the GH32 with a high transfructosylation activity. The structure of AjFT comprises two domains with an N-terminal catalytic domain containing a five-blade beta-propeller fold linked to a C-terminal beta-sandwich domain. Structures of various mutant AjFT-substrate complexes reveal complete four substrate-binding subsites (-1 to +3) in the catalytic pocket with shapes and characters distinct from those of clan GH-J enzymes. Residues Asp-60, Asp-191, and Glu-292 that are proposed for nucleophile, transition-state stabilizer, and general acid/base catalyst, respectively, govern the binding of the terminal fructose at the -1 subsite and the catalytic reaction. Mutants D60A, D191A, and E292A completely lost their activities. Residues Ile-143, Arg-190, Glu-292, Glu-318, and His-332 combine the hydrophobic Phe-118 and Tyr-369 to define the +1 subsite for its preference of fructosyl and glucosyl moieties. Ile-143 and Gln-327 define the +2 subsite for raffinose, whereas Tyr-404 and Glu-405 define the +2 and +3 subsites for inulin-type substrates with higher structural flexibilities. Structural geometries of 1-kestose, nystose and raffinose are different from previous data. All results shed light on the catalytic mechanism and substrate recognition of AjFT and other clan GH-J fructosyltransferases.

摘要

果糖基转移酶催化果糖单元从一个蔗糖/果聚糖转移到另一个,并参与低聚果糖/果聚糖的生产。这些酶属于糖苷水解酶家族 32(GH32),具有保留的催化机制。在这里,我们描述了来自 Aspergillus japonicus CB05 的重组果糖基转移酶(AjFT)及其突变体 D191A 与各种供体/受体底物(包括蔗糖、1-蔗果三糖、棉子糖和水苏糖)的复合物的晶体结构。这是第一个具有高转果糖活性的 GH32 果糖基转移酶的结构。AjFT 的结构由两个结构域组成,一个包含五叶β-桨叶折叠的 N 端催化结构域与一个 C 端β-三明治结构域相连。各种突变体 AjFT-底物复合物的结构揭示了催化口袋中完整的四个底物结合亚位点(-1 到+3),其形状和特征与 clan GH-J 酶不同。假定为亲核试剂、过渡态稳定剂和广义酸碱催化剂的残基 Asp-60、Asp-191 和 Glu-292 分别控制末端果糖在-1 亚位点的结合和催化反应。突变体 D60A、D191A 和 E292A 完全失去了活性。残基 Ile-143、Arg-190、Glu-292、Glu-318 和 His-332 将疏水性的 Phe-118 和 Tyr-369 结合起来,定义了+1 亚位点,以优先结合果糖和葡萄糖部分。Ile-143 和 Gln-327 定义了棉子糖的+2 亚位点,而 Tyr-404 和 Glu-405 则定义了菊粉型底物的+2 和+3 亚位点,这些底物具有更高的结构灵活性。1-蔗果三糖、棉子糖和水苏糖的结构几何形状与以前的数据不同。所有结果都阐明了 AjFT 和其他 clan GH-J 果糖基转移酶的催化机制和底物识别。

相似文献

[1]
Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis.

J Biol Chem. 2010-5-13

[2]
Crystal structure of 6-SST/6-SFT from Pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose.

Plant J. 2012-1-10

[3]
QM/MM modeling of the hydrolysis and transfructosylation reactions of fructosyltransferase from Aspergillus japonicas, an enzyme that produces prebiotic fructooligosaccharide.

J Mol Graph Model. 2017-11-24

[4]
Crystal structure of a β-fructofuranosidase with high transfructosylation activity from Aspergillus kawachii.

Biosci Biotechnol Biochem. 2017-9

[5]
First crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum: discovery of an extra-pocket in the catalytic domain responsible for its endo-activity.

Biochimie. 2012-6-28

[6]
Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition.

J Mol Biol. 2004-11-19

[7]
Elucidation of the mechanism underlying the sequential catalysis of inulin by fructotransferase.

Int J Biol Macromol. 2024-10

[8]
Identification and Functional Characterization of a Fructooligosaccharides-Forming Enzyme from Aspergillus aculeatus.

Appl Biochem Biotechnol. 2016-6

[9]
Structural and kinetic insights reveal that the amino acid pair Gln-228/Asn-254 modulates the transfructosylating specificity of Schwanniomyces occidentalis β-fructofuranosidase, an enzyme that produces prebiotics.

J Biol Chem. 2012-4-16

[10]
Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide substrate raffinose.

Biochem J. 2006-5-1

引用本文的文献

[1]
Structural insight into the hydrolase and synthase activities of an alkaline α-galactosidase from Arabidopsis from complexes with substrate/product.

Acta Crystallogr D Struct Biol. 2023-2-1

[2]
Insights into the Structure of the Highly Glycosylated Ffase from Enhance Its Biotechnological Potential.

Int J Mol Sci. 2022-11-29

[3]
Cloning, expression and characterization of a novel fructosyltransferase from and its application in the synthesis of fructooligosaccharides.

RSC Adv. 2019-7-31

[4]
Continuous production of fructooligosaccharides by recycling of the thermal-stable β-fructofuranosidase produced by Aspergillus niger.

Biotechnol Lett. 2021-6

[5]
Innovations in CAZyme gene diversity and its modification for biorefinery applications.

Biotechnol Rep (Amst). 2020-9-1

[6]
Cytosolic/Plastid Glyceraldehyde-3-Phosphate Dehydrogenase Is a Negative Regulator of Strawberry Fruit Ripening.

Genes (Basel). 2020-5-21

[7]
Data characterizing the energetics of enzyme-catalyzed hydrolysis and transglycosylation reactions by DFT cluster model calculations.

Data Brief. 2018-2-7

[8]
D181A Site-Mutagenesis Enhances Both the Hydrolyzing and Transfructosylating Activities of BmSUC1, a Novel β-Fructofuranosidase in the Silkworm Bombyx mori.

Int J Mol Sci. 2018-2-28

[9]
Expression and Activity Analysis of Fructosyltransferase from Aspergillus oryzae.

Protein J. 2017-8

[10]
Characterization of a novel low-temperature-active, alkaline and sucrose-tolerant invertase.

Sci Rep. 2016-8-24

本文引用的文献

[1]
Processing of X-ray diffraction data collected in oscillation mode.

Methods Enzymol. 1997

[2]
Donor and acceptor substrate selectivity among plant glycoside hydrolase family 32 enzymes.

FEBS J. 2009-10

[3]
Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications.

J Exp Bot. 2009

[4]
Transforming a fructan:fructan 6G-fructosyltransferase from perennial ryegrass into a sucrose:sucrose 1-fructosyltransferase.

Plant Physiol. 2009-1

[5]
An acceptor-substrate binding site determining glycosyl transfer emerges from mutant analysis of a plant vacuolar invertase and a fructosyltransferase.

Plant Mol Biol. 2009-1

[6]
Searching protein structure databases with DaliLite v.3.

Bioinformatics. 2008-12-1

[7]
Transforming wheat vacuolar invertase into a high affinity sucrose:sucrose 1-fructosyltransferase.

New Phytol. 2008

[8]
Microbial production of fructosyltransferases for synthesis of pre-biotics.

Biotechnol Lett. 2008-11

[9]
Plant fructans in stress environments: emerging concepts and future prospects.

J Exp Bot. 2008

[10]
Selected mutations in Bacillus subtilis levansucrase semi-conserved regions affecting its biochemical properties.

Protein Eng Des Sel. 2008-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索