文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从与底物/产物的复合物解析拟南芥碱性 α-半乳糖苷酶的水解酶和合成酶活性的结构见解。

Structural insight into the hydrolase and synthase activities of an alkaline α-galactosidase from Arabidopsis from complexes with substrate/product.

机构信息

Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Cente, Hsinchu 30076, Taiwan.

Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan City 701, Taiwan.

出版信息

Acta Crystallogr D Struct Biol. 2023 Feb 1;79(Pt 2):154-167. doi: 10.1107/S2059798323000037. Epub 2023 Jan 20.


DOI:10.1107/S2059798323000037
PMID:36762861
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9912918/
Abstract

The alkaline α-galactosidase AtAkαGal3 from Arabidopsis thaliana catalyzes the hydrolysis of α-D-galactose from galacto-oligosaccharides under alkaline conditions. A phylogenetic analysis based on sequence alignment classifies AtAkαGal3 as more closely related to the raffinose family of oligosaccharide (RFO) synthases than to the acidic α-galactosidases. Here, thin-layer chromatography is used to demonstrate that AtAkαGal3 exhibits a dual function and is capable of synthesizing stachyose using raffinose, instead of galactinol, as the galactose donor. Crystal structures of complexes of AtAkαGal3 and its D383A mutant with various substrates and products, including galactose, galactinol, raffinose, stachyose and sucrose, are reported as the first representative structures of an alkaline α-galactosidase. The structure of AtAkαGal3 comprises three domains: an N-terminal domain with 13 antiparallel β-strands, a catalytic domain with an (α/β)-barrel fold and a C-terminal domain composed of β-sheets that form two Greek-key motifs. The WW box of the N-terminal domain, which comprises the conserved residues FRSKXWW in the RFO synthases, contributes Trp77 and Trp78 to the +1 subsite to contribute to the substrate-binding ability together with the (α/β) barrel of the catalytic domain. The C-terminal domain is presumably involved in structural stability. Structures of the D383A mutant in complex with various substrates and products, especially the natural substrate/product stachyose, reveal four complete subsites (-1 to +3) at the catalytic site. A functional loop (residues 329-352) that exists in the alkaline α-galactosidase AtAkαGal3 and possibly in RFO synthases, but not in acidic α-galactosidases, stabilizes the stachyose at the +2 and +3 subsites and extends the catalytic pocket for the transferase mechanism. Considering the similarities in amino-acid sequence, catalytic domain and activity between alkaline α-galactosidases and RFO synthases, the structure of AtAkαGal3 might also serve a model for the study of RFO synthases, structures of which are lacking.

摘要

拟南芥的碱性α-半乳糖苷酶 AtAkαGal3 在碱性条件下催化半乳糖寡糖中α-D-半乳糖的水解。基于序列比对的系统发育分析将 AtAkαGal3 归类为与棉子糖家族寡糖(RFO)合酶更密切相关,而不是与酸性α-半乳糖苷酶相关。在这里,薄层层析用于证明 AtAkαGal3 具有双重功能,能够使用棉子糖而不是半乳糖醇作为半乳糖供体来合成水苏糖。AtAkαGal3 及其 D383A 突变体与各种底物和产物(包括半乳糖、半乳糖醇、棉子糖、水苏糖和蔗糖)的复合物的晶体结构作为碱性α-半乳糖苷酶的第一个代表结构被报道。AtAkαGal3 的结构包括三个结构域:包含 13 个反平行β-链的 N 端结构域、具有(α/β)桶折叠的催化结构域和由形成两个希腊钥匙基序的β-片层组成的 C 端结构域。N 端结构域的 WW 盒包含 RFO 合酶中保守的 FRSKXWW 残基,将色氨酸 77 和色氨酸 78 贡献到+1亚位点,与催化结构域的(α/β)桶一起有助于底物结合能力。C 端结构域可能参与结构稳定性。与各种底物和产物(特别是天然底物/产物水苏糖)形成复合物的 D383A 突变体的结构揭示了催化位点上的四个完整亚位点(-1 至+3)。存在于碱性α-半乳糖苷酶 AtAkαGal3 中,可能存在于 RFO 合酶中,但不存在于酸性α-半乳糖苷酶中的功能环(残基 329-352)稳定+2 和+3 亚位点的水苏糖,并扩展了用于转移酶机制的催化口袋。考虑到碱性α-半乳糖苷酶和 RFO 合酶在氨基酸序列、催化结构域和活性方面的相似性,AtAkαGal3 的结构也可能作为 RFO 合酶的研究模型,因为缺乏其结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/ff6d7bd62d59/d-79-00154-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/aada0270671e/d-79-00154-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/ede0d4b5d127/d-79-00154-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/d9e8a36ce9f1/d-79-00154-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/4236174be087/d-79-00154-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/1e5d3809f077/d-79-00154-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/02c386747daf/d-79-00154-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/d4fbc8f95e1e/d-79-00154-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/ff2be522ec1b/d-79-00154-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/79dca8e461d0/d-79-00154-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/ff6d7bd62d59/d-79-00154-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/aada0270671e/d-79-00154-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/ede0d4b5d127/d-79-00154-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/d9e8a36ce9f1/d-79-00154-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/4236174be087/d-79-00154-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/1e5d3809f077/d-79-00154-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/02c386747daf/d-79-00154-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/d4fbc8f95e1e/d-79-00154-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/ff2be522ec1b/d-79-00154-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/79dca8e461d0/d-79-00154-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ed/9912918/ff6d7bd62d59/d-79-00154-fig10.jpg

相似文献

[1]
Structural insight into the hydrolase and synthase activities of an alkaline α-galactosidase from Arabidopsis from complexes with substrate/product.

Acta Crystallogr D Struct Biol. 2023-2-1

[2]
Crystal Structure of α-Galactosidase from : Insight into Hexamer Assembly and Substrate Specificity.

J Agric Food Chem. 2020-6-3

[3]
Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana.

Plant J. 2002-2

[4]
Crystal structure of rice alpha-galactosidase complexed with D-galactose.

J Biol Chem. 2003-5-30

[5]
Cloning and functional expression of alkaline alpha-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases.

Plant J. 2003-1

[6]
Molecular cloning of AtRS4, a seed specific multifunctional RFO synthase/galactosylhydrolase in Arabidopsis thaliana.

Front Plant Sci. 2015-9-29

[7]
Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding.

J Mol Biol. 2011-7-30

[8]
Aspergillus nidulans alpha-galactosidase of glycoside hydrolase family 36 catalyses the formation of alpha-galacto-oligosaccharides by transglycosylation.

FEBS J. 2010-7-30

[9]
A novel alkaline alpha-galactosidase from melon fruit with a substrate preference for raffinose.

Plant Physiol. 1999-3

[10]
Regulation of Seed Vigor by Manipulation of Raffinose Family Oligosaccharides in Maize and Arabidopsis thaliana.

Mol Plant. 2017-11-7

引用本文的文献

[1]
OsAPSE modulates non-covalent interactions between arabinogalactan protein -glycans and pectin in rice cell walls.

Front Plant Sci. 2025-5-22

[2]
Water deficit response in nodulated soybean roots: a comprehensive transcriptome and translatome network analysis.

BMC Plant Biol. 2024-6-21

[3]
Insights into Sucrose Metabolism and Its Ethylene-Dependent Regulation in Cucumis melo L.

Mol Biotechnol. 2025-1

本文引用的文献

[1]
Revealing the mechanism for covalent inhibition of glycoside hydrolases by carbasugars at an atomic level.

Nat Commun. 2018-8-13

[2]
α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease.

J Biol Chem. 2018-4-19

[3]
MolProbity: More and better reference data for improved all-atom structure validation.

Protein Sci. 2018-1

[4]
Processing of X-ray diffraction data collected in oscillation mode.

Methods Enzymol. 1997

[5]
PLIP: fully automated protein-ligand interaction profiler.

Nucleic Acids Res. 2015-7-1

[6]
Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination.

Acta Crystallogr D Biol Crystallogr. 2014-9

[7]
Deciphering key features in protein structures with the new ENDscript server.

Nucleic Acids Res. 2014-4-21

[8]
REFMAC5 for the refinement of macromolecular crystal structures.

Acta Crystallogr D Biol Crystallogr. 2011-4

[9]
Overview of the CCP4 suite and current developments.

Acta Crystallogr D Biol Crystallogr. 2011-4

[10]
Structural analysis of Saccharomyces cerevisiae alpha-galactosidase and its complexes with natural substrates reveals new insights into substrate specificity of GH27 glycosidases.

J Biol Chem. 2010-6-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索