Biology Department, Laboratory for Molecular Plant Physiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Box 2434, B-3001 Heverlee, Belgium.
Plant J. 2012 Apr;70(2):205-19. doi: 10.1111/j.1365-313X.2011.04858.x. Epub 2012 Jan 10.
Fructans play important roles as reserve carbohydrates and stress protectants in plants, and additionally serve as prebiotics with emerging antioxidant properties. Various fructan types are synthesized by an array of plant fructosyltransferases belonging to family 32 of the glycoside hydrolases (GH32), clustering together with GH68 in Clan-J. Here, the 3D structure of a plant fructosyltransferase from a native source, the Pachysandra terminalis 6-SST/6-SFT (Pt6-SST/6-SFT), is reported. In addition to its 1-SST (1-kestose-forming) and hydrolytic side activities, the enzyme uses sucrose to create graminan- and levan-type fructans, which are probably associated with cold tolerance in this species. Furthermore, a Pt6-SST/6-SFT complex with 6-kestose was generated, representing a genuine acceptor binding modus at the +1, +2 and +3 subsites in the active site. The enzyme shows a unique configuration in the vicinity of its active site, including a unique D/Q couple located at the +1 subsite that plays a dual role in donor and acceptor substrate binding. Furthermore, it shows a unique orientation of some hydrophobic residues, probably contributing to its specific functionality. A model is presented showing formation of a β(2-6) fructosyl linkage on 6-kestose to create 6,6-nystose, a mechanism that differs from the creation of a β(2-1) fructosyl linkage on sucrose to produce 1-kestose. The structures shed light on the evolution of plant fructosyltransferases from their vacuolar invertase ancestors, and contribute to further understanding of the complex structure-function relationships within plant GH32 members.
果聚糖在植物中作为储备碳水化合物和应激保护剂发挥着重要作用,此外还作为具有新兴抗氧化特性的益生元。各种果聚糖类型由属于糖苷水解酶 (GH32) 家族 32 的一系列植物果糖基转移酶合成,与 Clan-J 中的 GH68 聚集在一起。在这里,报道了一种来自天然来源的植物果糖基转移酶,即多穗柯 6-SST/6-SFT(Pt6-SST/6-SFT)的 3D 结构。除了其 1-SST(1-棉子糖形成)和水解侧活性外,该酶还利用蔗糖生成格兰尼安和黎芦醇型果聚糖,这可能与该物种的耐寒性有关。此外,还生成了与 6-棉子糖的 Pt6-SST/6-SFT 复合物,代表了活性位点中 +1、+2 和 +3 亚基上真正的受体结合模式。该酶在其活性位点附近表现出独特的构象,包括位于 +1 亚基的独特的 D/Q 对,在供体和受体底物结合中发挥双重作用。此外,它还表现出一些疏水性残基的独特取向,可能有助于其特定功能。提出了一个模型,展示了在 6-棉子糖上形成β(2-6)果糖基键以生成 6,6-新棉子糖的机制,该机制与在蔗糖上形成β(2-1)果糖基键以生成 1-棉子糖的机制不同。这些结构阐明了植物果糖基转移酶从液泡转化酶祖先进化而来的机制,并有助于进一步了解植物 GH32 成员中复杂的结构-功能关系。