Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
Anal Chem. 2010 Jun 15;82(12):5069-81. doi: 10.1021/ac100064b.
A novel peak alignment algorithm using a distance and spectrum correlation optimization (DISCO) method has been developed for two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC/TOF-MS)-based metabolomics. This algorithm uses the output of the instrument control software, ChromaTOF, as its input data. It detects and merges multiple peak entries of the same metabolite into one peak entry in each input peak list. After a z-score transformation of metabolite retention times, DISCO selects landmark peaks from all samples based on both two-dimensional retention times and mass spectrum similarity of fragment ions measured by Pearson's correlation coefficient. A local linear fitting method is employed in the original two-dimensional retention time space to correct retention time shifts. A progressive retention time map searching method is used to align metabolite peaks in all samples together based on optimization of the Euclidean distance and mass spectrum similarity. The effectiveness of the DISCO algorithm is demonstrated using data sets acquired under different experiment conditions and a spiked-in experiment.
一种新的峰对齐算法,使用距离和谱相关优化(DISCO)方法,已经被开发用于二维气相色谱飞行时间质谱(GCxGC/TOF-MS)为基础的代谢组学。该算法使用仪器控制软件 ChromaTOF 的输出作为其输入数据。它在每个输入峰列表中检测并合并相同代谢物的多个峰条目为一个峰条目。在对代谢物保留时间进行 z 分数转换后,DISCO 根据二维保留时间和通过 Pearson 相关系数测量的碎片离子的质谱相似性,从所有样品中选择地标峰。在原始二维保留时间空间中使用局部线性拟合方法来校正保留时间偏移。使用基于欧几里得距离和质谱相似性优化的渐进保留时间图搜索方法,将所有样品中的代谢物峰对齐。使用在不同实验条件下采集的数据和加标实验证明了 DISCO 算法的有效性。