Department of Computer Science and Information Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University , No. 2, Syu-Jhou Road, Taipei 10055, Taiwan.
Anal Chem. 2016 Nov 1;88(21):10395-10403. doi: 10.1021/acs.analchem.6b00755. Epub 2016 Oct 13.
Two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) is superior for chromatographic separation and provides great sensitivity for complex biological fluid analysis in metabolomics. However, GC×GC/TOF-MS data processing is currently limited to vendor software and typically requires several preprocessing steps. In this work, we implement a web-based platform, which we call GCMS, to facilitate the application of recent advances in GC×GC/TOF-MS, especially for metabolomics studies. The core processing workflow of GCMS consists of blob/peak detection, baseline correction, and blob alignment. GCMS treats GC×GC/TOF-MS data as pictures and clusters the pixels as blobs according to the brightness of each pixel to generate a blob table. GCMS then aligns the blobs of two GC×GC/TOF-MS data sets according to their distance and similarity. The blob distance and similarity are the Euclidean distance of the first and second retention times of two blobs and the Pearson's correlation coefficient of the two mass spectra, respectively. GCMS also directly corrects the raw data baseline. The analytical performance of GCMS was evaluated using GC×GC/TOF-MS data sets of Angelica sinensis compounds acquired under different experimental conditions and of human plasma samples. The results show that GCMS is an easy-to-use tool for detecting peaks and correcting baselines, and GCMS is able to align GC×GC/TOF-MS data sets acquired under different experimental conditions. GCMS is freely accessible at http://gc2ms.web.cmdm.tw .
二维气相色谱飞行时间质谱(GC×GC/TOF-MS)在色谱分离方面具有优势,可为代谢组学中复杂生物流体分析提供高灵敏度。然而,GC×GC/TOF-MS 数据处理目前仅限于供应商软件,通常需要几个预处理步骤。在这项工作中,我们实现了一个基于网络的平台,称为 GCMS,以促进 GC×GC/TOF-MS 的最新进展的应用,特别是在代谢组学研究中。GCMS 的核心处理工作流程包括斑点/峰检测、基线校正和斑点对齐。GCMS 将 GC×GC/TOF-MS 数据视为图片,并根据每个像素的亮度将像素聚类为斑点,从而生成斑点表。然后,GCMS 根据两个 GC×GC/TOF-MS 数据集的距离和相似性来对齐两个数据集的斑点。斑点的距离和相似性分别是两个斑点的第一和第二保留时间的欧几里得距离和两个质谱的 Pearson 相关系数。GCMS 还直接校正原始数据的基线。我们使用不同实验条件下采集的当归化合物的 GC×GC/TOF-MS 数据集和人血浆样品的 GC×GC/TOF-MS 数据集来评估 GCMS 的分析性能。结果表明,GCMS 是一种用于检测峰和校正基线的易用工具,并且 GCMS 能够对齐在不同实验条件下采集的 GC×GC/TOF-MS 数据集。GCMS 可在 http://gc2ms.web.cmdm.tw 免费访问。