Biomechanics Laboratory, Deerfield Academy, Deerfield, MA 01342, USA.
Arthropod Struct Dev. 2010 Sep;39(5):305-9. doi: 10.1016/j.asd.2010.05.002. Epub 2010 Jul 31.
The vertebrate endoskeleton possesses a massive internal network of load-distributing trabeculae that in most locations accounts for the vast majority of bone cross sectional area. In contrast, arthropods rely on the external cuticle and its intermittent outpocketings to distribute the daily stresses of physiological loading. One of the constraints of the arthropod exoskeleton is the necessity to house the musculature involved in locomotion, feeding and etc. Because of this lack of an extensive internal load-distributing trabecular network, any load-distributing mechanism in arthropods would necessarily have to incorporate the exoskeleton. Several authors have identified structural apophysi whose functions presumably have mechanical significance, but few have been identified using quantitative analyses. This study investigates a novel stress-reducing structure arising from the articulation sites in the exoskeleton of the blue crab, Callinectes sapidus. During dissection of the merus-carpus joint and leg cuticle of the blue crab, an unique system of internal strut-like members was found radiating, both longitudinally and laterally, from the articular surface of the proximal merus segment, tapering into the diaphyseal region. This strut system, an internal outpocketing of the exoskeleton and semi-circular in cross section, mirrors the trabecular pattern seen radiating from vertebrate joint surfaces. Earlier reports of this structural system described it as a muscle attachment site and made little or no reference to potential load distribution properties. Finite element analysis (FEA) models confirm the efficacy of stress distributing properties of this articular strut system in the blue crab leg. In the models, the struts significantly reduce stress concentrations, reduce localized strains and minimize the risk of failure via buckling. Models lacking this strut system generate 94.7% larger peak von Mises stress at the articulation site, 37% higher peak displacement and 4% greater equivalent strain. The model with the struts is capable of withstanding an applied physiological load of up to 16.6 N prior to buckling, more than twice that of the model without struts (7.8 N). We suggest that this novel arthropod strut system is likely utilized at many joint surfaces at locations of high skeletal stress concentrations, is an adaptation for minimizing skeletal failure via localized buckling, and may be present in other arthropod taxa.
脊椎动物的内骨骼拥有一个庞大的内部负荷分配小梁网络,在大多数位置上,它占据了骨骼横截面积的绝大部分。相比之下,节肢动物依靠外部的外骨骼及其间歇性的膨出来分配生理负荷的日常压力。节肢动物外骨骼的一个限制是必须容纳参与运动、进食等的肌肉组织。由于缺乏广泛的内部负荷分配小梁网络,节肢动物中的任何负荷分配机制都必须包含外骨骼。几位作者已经确定了结构突起,其功能推测具有机械意义,但很少有人使用定量分析来识别。本研究调查了蓝蟹(Callinectes sapidus)外骨骼关节处出现的一种新型的减压结构。在蓝蟹的桡腕关节和腿甲壳的解剖过程中,发现了一种独特的内部支撑状结构,从近端桡腕关节表面向纵向和横向辐射,逐渐变细到骨干区域。这种支撑系统是外骨骼的内部膨出物,横截面呈半圆形,与从脊椎动物关节表面辐射的小梁模式相匹配。早期对这种结构系统的报告将其描述为肌肉附着点,几乎没有或根本没有提到潜在的负荷分配特性。有限元分析(FEA)模型证实了这种关节支撑系统在蓝蟹腿中的有效分配性质。在模型中,支撑物显著降低了应力集中,降低了局部应变,并通过屈曲最小化了失效的风险。缺乏这种支撑系统的模型在关节处产生的最大 von Mises 应力峰值增加了 94.7%,最大位移增加了 37%,等效应变增加了 4%。带有支撑物的模型能够承受高达 16.6 N 的生理负荷而不会屈曲,是没有支撑物的模型(7.8 N)的两倍多。我们认为,这种新型的节肢动物支撑系统可能在许多关节表面上用于高骨骼应力集中的位置,是通过局部屈曲最小化骨骼失效的一种适应,并且可能存在于其他节肢动物类群中。