文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

壳聚糖基聚电解质复合物作为药物传递系统中的潜在载体材料。

Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems.

机构信息

Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.

出版信息

Mar Drugs. 2010 Apr 19;8(4):1305-22. doi: 10.3390/md8041305.


DOI:10.3390/md8041305
PMID:20479980
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2866488/
Abstract

Chitosan has been the subject of interest for its use as a polymeric drug carrier material in dosage form design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. However, one drawback of using this natural polysaccharide in modified release dosage forms for oral administration is its fast dissolution rate in the stomach. Since chitosan is positively charged at low pH values (below its pK(a) value), it spontaneously associates with negatively charged polyions in solution to form polyelectrolyte complexes. These chitosan based polyelectrolyte complexes exhibit favourable physicochemical properties with preservation of chitosan's biocompatible characteristics. These complexes are therefore good candidate excipient materials for the design of different types of dosage forms. It is the aim of this review to describe complexation of chitosan with selected natural and synthetic polyanions and to indicate some of the factors that influence the formation and stability of these polyelectrolyte complexes. Furthermore, recent investigations into the use of these complexes as excipients in drug delivery systems such as nano- and microparticles, beads, fibers, sponges and matrix type tablets are briefly described.

摘要

壳聚糖由于其具有生物相容性、可生物降解性、低毒性和相对较低的生产成本等优点,已成为药物载体材料的研究热点。然而,将这种天然多糖用于口服的控释剂型时,其在胃中的溶解速度很快,这是一个缺点。由于壳聚糖在低 pH 值(低于其 pK(a) 值)下带正电荷,它会与溶液中的带负电荷的聚离子自发结合,形成聚电解质复合物。这些基于壳聚糖的聚电解质复合物具有良好的物理化学性质,并保留了壳聚糖的生物相容性特征。因此,这些复合物是设计不同类型剂型的理想赋形剂材料。本文旨在描述壳聚糖与选定的天然和合成聚阴离子的复合,并指出影响这些聚电解质复合物形成和稳定性的一些因素。此外,还简要描述了这些复合物作为纳米和微球、珠粒、纤维、海绵和基质型片剂等药物传递系统中的赋形剂的最新研究进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/bd219f6f72c1/marinedrugs-08-01305f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/792e7286ba56/marinedrugs-08-01305f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/96c4833548db/marinedrugs-08-01305f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/e0e5a11db446/marinedrugs-08-01305f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/1f712f31a22c/marinedrugs-08-01305f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/ca1d3f46d64e/marinedrugs-08-01305f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/f875a988cecb/marinedrugs-08-01305f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/b7509d5adfbd/marinedrugs-08-01305f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/b52aa48cc4dc/marinedrugs-08-01305f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/bde1a6b36e97/marinedrugs-08-01305f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/ee9923d650c0/marinedrugs-08-01305f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/bd219f6f72c1/marinedrugs-08-01305f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/792e7286ba56/marinedrugs-08-01305f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/96c4833548db/marinedrugs-08-01305f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/e0e5a11db446/marinedrugs-08-01305f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/1f712f31a22c/marinedrugs-08-01305f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/ca1d3f46d64e/marinedrugs-08-01305f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/f875a988cecb/marinedrugs-08-01305f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/b7509d5adfbd/marinedrugs-08-01305f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/b52aa48cc4dc/marinedrugs-08-01305f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/bde1a6b36e97/marinedrugs-08-01305f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/ee9923d650c0/marinedrugs-08-01305f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e1/2866488/bd219f6f72c1/marinedrugs-08-01305f11.jpg

相似文献

[1]
Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems.

Mar Drugs. 2010-4-19

[2]
Chitosan-polycarbophil complexes in swellable matrix systems for controlled drug release.

Curr Drug Deliv. 2007-10

[3]
Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery.

Int J Biol Macromol. 2013-12-17

[4]
Preparation, characterization and application of chitosan-alginate based polyelectrolyte complex as fast disintegrating drug delivery carrier.

Polim Med. 2011

[5]
Chitosan-based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review.

Carbohydr Polym. 2020-6-15

[6]
Biopharmaceutical evaluation of diclofenac sodium controlled release tablets prepared from gum karaya--chitosan polyelectrolyte complexes.

Drug Dev Ind Pharm. 2012-7

[7]
Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes.

Mar Drugs. 2014-12-19

[8]
Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery.

Curr Med Chem. 2019

[9]
Polyelectrolyte biomaterial interactions provide nanoparticulate carrier for oral insulin delivery.

Drug Deliv. 2008-2

[10]
Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin.

Eur J Pharm Sci. 2008-12-18

引用本文的文献

[1]
Review on the synergistic effect of adsorption and photocatalytic degradation of patulin by functionalized graphitic carbon nitride nanomaterials and hydrogels.

RSC Adv. 2025-7-14

[2]
Carbon nanotubes in biomedical applications: current status, promises, and challenges.

Carbon Lett (Korean Carbon Soc). 2022

[3]
Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy.

AAPS PharmSciTech. 2025-4-17

[4]
Self-Assembled Hydrogel Based on (Bio)polyelectrolyte Complex of Chitosan-Gelatin: Effect of Composition on Physicochemical Properties.

Gels. 2024-12-1

[5]
Formation and Characterization of Chitosan-Based Polyelectrolyte Complex Containing Antifungal Phenylpropanoids.

Polymers (Basel). 2024-11-29

[6]
Chitosan-based biomaterial delivery strategies for hepatocellular carcinoma.

Front Pharmacol. 2024-8-5

[7]
Chitosan/Hyaluronate Complex-Coated Electrospun Poly(3-hydroxybutyrate) Materials Containing Extracts from and/or with Various Biological Activities: Antioxidant, Antibacterial and In Vitro Anticancer Effects.

Polymers (Basel). 2024-7-24

[8]
Chitosan/Alginate-Based Nanoparticles for Antibacterial Agents Delivery.

Int J Nanomedicine. 2024

[9]
Polyelectrolyte complexes based on a novel and sustainable hemicellulose-rich lignosulphonate for drug delivery applications.

Drug Deliv Transl Res. 2024-12

[10]
Dual-Stimuli-Responsive Gut Microbiota-Targeting Nitidine Chloride-CS/PT-NPs Improved Metabolic Status in NAFLD.

Int J Nanomedicine. 2024

本文引用的文献

[1]
Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells.

New Phytol. 2004-3

[2]
Polyelectrolyte Complexes: A Review of their Applicability in Drug Delivery Technology.

Indian J Pharm Sci. 2009-9

[3]
Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery.

Biomaterials. 2010-2-10

[4]
Targeted delivery of low molecular drugs using chitosan and its derivatives.

Adv Drug Deliv Rev. 2009-10-27

[5]
Chitosan-based hydrogels for controlled, localized drug delivery.

Adv Drug Deliv Rev. 2009-9-30

[6]
Polymeric plant-derived excipients in drug delivery.

Molecules. 2009-7-16

[7]
Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma.

Int J Pharm. 2009-4-15

[8]
In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery.

Biomaterials. 2009-4

[9]
Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin.

Eur J Pharm Sci. 2008-12-18

[10]
Preparation of Carbopol/chitosan interpolymer complex as a controlled release tablet matrix; effect of complex formation medium on drug release characteristics.

Arch Pharm Res. 2008-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索