Suppr超能文献

基于壳聚糖-明胶(生物)聚电解质复合物的自组装水凝胶:组成对物理化学性质的影响

Self-Assembled Hydrogel Based on (Bio)polyelectrolyte Complex of Chitosan-Gelatin: Effect of Composition on Physicochemical Properties.

作者信息

Aleksandr Kashurin, Mikhail Litvinov, Aleksandr Podshivalov

机构信息

Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia.

出版信息

Gels. 2024 Dec 1;10(12):786. doi: 10.3390/gels10120786.

Abstract

Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin. It was shown that hydrogels at ≈ 1 had an increased sorption capacity and water sorption rate, as well as increased resistance to the in vitro model environment of phosphate-buffered saline () solution containing lysozyme at 37 °C. It was also shown that in and simulated gastric fluid () solutions, the effect of the polyelectrolyte swelling of the hydrogels was significantly suppressed; however, at ≥ 1, the (bio)PEC hydrogels had increased stability compared to the samples at < 1 and based on gelatin.

摘要

考虑到绿色化学领域的发展趋势以及在生物医学应用中使用天然材料的愿望,基于壳聚糖和明胶混合物的(生物)聚电解质复合物((生物)PEC)似乎是相关体系。通过在壳聚糖和明胶的不同离子化官能团比例下,从(生物)PEC的凝聚相分散体进行自组装的方法,与明胶水凝胶相比,本工作获得了对机械变形和在液体介质中吸收具有更高抗性的水凝胶。发现当≥1时,与基于明胶的水凝胶相比,水凝胶的弹性模量增加了四倍。结果表明,当≈1时,水凝胶具有更高的吸附容量和吸水速率,以及对含有溶菌酶的磷酸盐缓冲盐水()溶液在37°C下的体外模型环境具有更高的抗性。还表明,在和模拟胃液()溶液中,水凝胶的聚电解质溶胀效应受到显著抑制;然而,当≥1时,(生物)PEC水凝胶与<1且基于明胶的样品相比具有更高的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/11675578/5d6cb26940a7/gels-10-00786-g001.jpg

相似文献

2
Thermosensitive injectable hydrogel based on chitosan-polygalacturonic acid polyelectrolyte complexes for bone tissue engineering.
Carbohydr Polym. 2022 Oct 15;294:119769. doi: 10.1016/j.carbpol.2022.119769. Epub 2022 Jun 24.
3
Mussel-inspired self-healing hydrogel based on gelatin and oxidized tannic acid for pH-responsive controlled drug release.
J Biomater Sci Polym Ed. 2023 Oct;34(13):1771-1792. doi: 10.1080/09205063.2023.2182577. Epub 2023 Feb 23.
6
Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel.
Carbohydr Res. 2010 Aug 16;345(12):1774-80. doi: 10.1016/j.carres.2010.06.002. Epub 2010 Jun 16.
7
Chitosan-reinforced gelatin composite hydrogel as a tough, anti-freezing, and flame-retardant gel polymer electrolyte for flexible supercapacitors.
Int J Biol Macromol. 2023 Apr 15;234:123725. doi: 10.1016/j.ijbiomac.2023.123725. Epub 2023 Feb 21.
8
Optimization of chitosan-gelatin-based 3D-printed scaffolds for tissue engineering and drug delivery applications.
Int J Pharm. 2024 Dec 5;666:124776. doi: 10.1016/j.ijpharm.2024.124776. Epub 2024 Sep 27.

引用本文的文献

1
Innovative modification strategies and emerging applications of natural hydrogel scaffolds for osteoporotic bone defect regeneration.
Front Bioeng Biotechnol. 2025 Apr 28;13:1591896. doi: 10.3389/fbioe.2025.1591896. eCollection 2025.

本文引用的文献

2
Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels.
Sci Rep. 2021 Feb 5;11(1):3256. doi: 10.1038/s41598-021-82393-z.
4
High strength hydrogels with multiple shape-memory ability based on hydrophobic and electrostatic interactions.
Soft Matter. 2019 Jul 14;15(26):5264-5270. doi: 10.1039/c9sm00869a. Epub 2019 Jun 17.
5
Nanocomposite Hydrogels: Advances in Nanofillers Used for Nanomedicine.
Gels. 2018 Sep 6;4(3):75. doi: 10.3390/gels4030075.
6
Preparation of polyelectrolyte complex gel of sodium alginate with chitosan using basic solution of chitosan.
Int J Biol Macromol. 2019 Apr 1;126:54-59. doi: 10.1016/j.ijbiomac.2018.12.195. Epub 2018 Dec 22.
7
Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studies.
Mater Sci Eng C Mater Biol Appl. 2019 Jan 1;94:1056-1066. doi: 10.1016/j.msec.2018.10.048. Epub 2018 Oct 17.
8
Complex coacervation: Principles, mechanisms and applications in microencapsulation.
Int J Biol Macromol. 2019 Jan;121:1276-1286. doi: 10.1016/j.ijbiomac.2018.10.144. Epub 2018 Oct 22.
10
Engineered 3D-scaffolds of photocrosslinked chitosan-gelatin hydrogel hybrids for chronic wound dressings and regeneration.
Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:690-705. doi: 10.1016/j.msec.2017.04.126. Epub 2017 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验