Departament de Química, Universitat Autònoma de Barcelona, E-08173 Bellaterra, Spain.
J Am Chem Soc. 2010 Jun 9;132(22):7750-7. doi: 10.1021/ja101597s.
The efficiency of silica supported d(0) ML(4) alkene metathesis catalysts [([triple bond]SiO)M(NR(1))(=CHR(2))(X)] (M = Mo, W; R(1) = aryl and alkyl) is influenced by the nature of the X ancillary ligand. Replacing the alkyl ligand by a pyrrolyl ligand dramatically increases the performance of the catalyst. DFT calculations on the metathesis, the deactivation, and the byproduct formation pathways for the imido Mo and W and the alkylidyne Re complexes give a rational for the role of pyrrolyl ligand. Dissymmetry at the metal center leads to more efficient catalyst even when the difference in sigma-donating ability between X and OSi is not large. beta-H transfer at the square based pyramid metallacyclobutane is the key step for catalyst deactivation and byproduct formation. Overall, the greatest benefit of substituting the ancillary alkyl by a pyrrolyl ligand, [([triple bond]SiO)M(ER(1))(=CHR(2))(pyrrolyl)], is in fact not to improve the efficiency of the catalytic cycle of alkene metathesis, but to shut down deactivation and byproduct formation pathways. Pyrrolyl ligand, and more generally ligands having metal-bound-atoms more electronegative than carbon, disfavor mostly the two first steps (beta-H transfer at the metallacyclobutane and subsequent insertion of an ethene in the M-H bond) of the deactivation channel. The [([triple bond]SiO)M(ER(1))(=CHR(2))(pyrrolyl)] catalyst is thus highly efficient because pyrrolyl ligand is optimal: (i) it is still a better electron donor than the siloxy group, thus, favoring the metathesis pathway (dissymmetry at the metal center); and (ii) the nitrogen of the pyrrolyl ligand is more electronegative than the carbon of the alkyl group, thus, specifically disfavoring the decomposition of the metallacyclobutane intermediate via beta-H transfer.
担载于二氧化硅上的 d(0) ML(4) 烯烃复分解催化剂[([三重键]SiO)M(NR(1))(=CHR(2))(X)](M=Mo、W;R(1)=芳基和烷基)的效率受 X 辅助配体的性质影响。用吡咯基配体取代烷基配体可显著提高催化剂的性能。对亚胺 Mo 和 W 以及烷基 Re 配合物的复分解、失活和副产物形成途径进行的 DFT 计算为吡咯基配体的作用提供了依据。金属中心的不对称性导致即使 X 和 OSi 之间的 sigma 给电子能力差异不大,催化剂也更有效。在四方锥型金属环丁烷中β-H 转移是催化剂失活和副产物形成的关键步骤。总的来说,用吡咯基配体[([三重键]SiO)M(ER(1))(=CHR(2))(吡咯基)]替代辅助烷基的最大好处实际上不是提高烯烃复分解催化循环的效率,而是关闭失活和副产物形成途径。吡咯基配体,更一般地说,配体中的金属结合原子比碳更具电负性,主要不利于失活途径的前两个步骤(金属环丁烷中的β-H 转移和随后在 M-H 键中插入乙烯)。[([三重键]SiO)M(ER(1))(=CHR(2))(吡咯基)]催化剂因此非常高效,因为吡咯基配体是最佳的:(i) 它仍然是比硅氧基更好的电子供体,因此有利于复分解途径(金属中心的不对称性);(ii) 吡咯基配体中的氮比烷基中的碳更具电负性,因此特别不利于通过β-H 转移分解金属环丁烷中间体。