Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA.
ACS Nano. 2010 Jun 22;4(6):3363-73. doi: 10.1021/nn9018834.
Understanding the nanoparticle-cell interaction is critical for the safe development of nanomaterials. Herein, we explore the impact of three metal oxide nanoparticles, nonporous Stober SiO(2), mesoporous SiO(2), and nonporous anatase TiO(2) nanoparticles, on primary culture mast cells. Using transmission electron microscopy and inductively coupled plasma atomic emission spectroscopy, we demonstrate that each class of nanoparticle is internalized by the mast cells, localizing primarily in the secretory granules, with uptake efficiency increasing in the following order: nonporous SiO(2) < porous SiO(2) < nonporous TiO(2) nanoparticles. The influence of nanoparticle-laden granules was assessed using carbon-fiber microelectrode amperometry measurements that reveal functional changes in chemical messenger secretion from mast cell granules. Both nonporous and porous SiO(2) nanoparticles cause a decrease in the number of molecules released per granule, with nonporous SiO(2) also inducing a decrease in the amperometric spike frequency and, therefore, having a larger impact on cell function. As the two classes of SiO(2) nanoparticles vary only in their porosity, these results suggest that, while the mesoporous SiO(2) has a drastically larger total surface area due to the pores, the cell-contactable surface area, which is higher for the nonporous SiO(2), is more important in determining a nanoparticles' cellular impact. In comparison, exposure to nonporous TiO(2) slows the kinetics of secretion without altering the number of molecules released from the average granule. The varying immune cell response following exposure to nonporous SiO(2) and nonporous TiO(2) indicates that the nanoparticle-cell interactions are also modulated by surface chemistry.
了解纳米颗粒与细胞的相互作用对于安全开发纳米材料至关重要。在此,我们研究了三种金属氧化物纳米颗粒(无孔 Stober SiO2、介孔 SiO2 和无孔锐钛矿 TiO2 纳米颗粒)对原代培养肥大细胞的影响。使用透射电子显微镜和电感耦合等离子体原子发射光谱法,我们证明了每一类纳米颗粒都被肥大细胞内化,主要定位于分泌颗粒中,摄取效率按以下顺序增加:无孔 SiO2 < 介孔 SiO2 < 无孔 TiO2 纳米颗粒。通过碳纤维微电极安培测量评估了载纳米颗粒颗粒的影响,该测量揭示了肥大细胞颗粒中化学信使分泌功能的变化。无孔和介孔 SiO2 纳米颗粒均导致每个颗粒释放的分子数量减少,而无孔 SiO2 还诱导安培计尖峰频率降低,因此对细胞功能的影响更大。由于这两种类型的 SiO2 纳米颗粒仅在其孔隙率上有所不同,因此这些结果表明,尽管介孔 SiO2 由于孔隙而具有更大的总表面积,但与细胞接触的表面积对于无孔 SiO2 更高,对于确定纳米颗粒的细胞影响更为重要。相比之下,暴露于无孔 TiO2 会减缓分泌的动力学,而不会改变平均颗粒释放的分子数量。暴露于无孔 SiO2 和无孔 TiO2 后免疫细胞反应的变化表明,纳米颗粒与细胞的相互作用也受到表面化学的调节。