Suppr超能文献

独立随机高斯矩阵乘积的谱

Spectrum of the product of independent random Gaussian matrices.

作者信息

Burda Z, Janik R A, Waclaw B

机构信息

Marian Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Kraków, Poland.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041132. doi: 10.1103/PhysRevE.81.041132. Epub 2010 Apr 27.

Abstract

We show that the eigenvalue density of a product X=X1X2...XM of M independent NxN Gaussian random matrices in the limit N-->infinity is rotationally symmetric in the complex plane and is given by a simple expression rho(z,z)=1/Mpisigma(-2/M)|z|(-2+(2/M)) for |z|<or=sigma, and is zero for |z|>sigma. The parameter sigma corresponds to the radius of the circular support and is related to the amplitude of the Gaussian fluctuations. This form of the eigenvalue density is highly universal. It is identical for products of Gaussian Hermitian, non-Hermitian, and real or complex random matrices. It does not change even if the matrices in the product are taken from different Gaussian ensembles. We present a self-contained derivation of this result using a planar diagrammatic technique. Additionally, we conjecture that this distribution also holds for any matrices whose elements are independent centered random variables with a finite variance or even more generally for matrices which fulfill Pastur-Lindeberg's condition. We provide a numerical evidence supporting this conjecture.

摘要

我们证明,在(N\to\infty)的极限情况下,(M)个独立的(N\times N)高斯随机矩阵的乘积(X = X_1X_2\cdots X_M)的特征值密度在复平面上是旋转对称的,并且对于(|z|\leq\sigma),由一个简单的表达式(\rho(z,\bar{z})=\frac{1}{M\pi\sigma^{-\frac{2}{M}}}|z|^{-\left(2 - \frac{2}{M}\right)})给出,对于(|z|>\sigma)则为零。参数(\sigma)对应于圆形支撑的半径,并且与高斯涨落的幅度有关。这种特征值密度的形式具有高度的普遍性。它对于高斯厄米特矩阵、非厄米特矩阵以及实或复随机矩阵的乘积是相同的。即使乘积中的矩阵取自不同的高斯系综,它也不会改变。我们使用平面图解技术给出了这个结果的自包含推导。此外,我们推测这种分布对于任何其元素是具有有限方差的独立中心随机变量的矩阵,甚至更一般地对于满足帕斯特 - 林德伯格条件的矩阵也成立。我们提供了支持这个推测的数值证据。

相似文献

1
Spectrum of the product of independent random Gaussian matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041132. doi: 10.1103/PhysRevE.81.041132. Epub 2010 Apr 27.
2
Quaternionic R transform and non-Hermitian random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052111. doi: 10.1103/PhysRevE.92.052111. Epub 2015 Nov 10.
3
Level density and level-spacing distributions of random, self-adjoint, non-Hermitian matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031122. doi: 10.1103/PhysRevE.83.031122. Epub 2011 Mar 18.
4
Commutative law for products of infinitely large isotropic random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022107. doi: 10.1103/PhysRevE.88.022107. Epub 2013 Aug 7.
5
Spectral relations between products and powers of isotropic random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061137. doi: 10.1103/PhysRevE.86.061137. Epub 2012 Dec 27.
6
Rotationally invariant ensembles of integrable matrices.
Phys Rev E. 2016 May;93(5):052114. doi: 10.1103/PhysRevE.93.052114. Epub 2016 May 9.
7
Free random Lévy and Wigner-Lévy matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051126. doi: 10.1103/PhysRevE.75.051126. Epub 2007 May 30.
8
Cusp Universality for Random Matrices I: Local Law and the Complex Hermitian Case.
Commun Math Phys. 2020;378(2):1203-1278. doi: 10.1007/s00220-019-03657-4. Epub 2020 Apr 28.
9
Universality of local spectral statistics of products of random matrices.
Phys Rev E. 2020 Nov;102(5-1):052134. doi: 10.1103/PhysRevE.102.052134.
10
Multiplication law and S transform for non-Hermitian random matrices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 1):061125. doi: 10.1103/PhysRevE.84.061125. Epub 2011 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验