Suppr超能文献

四面体密集周期堆积族的精确构造。

Exact constructions of a family of dense periodic packings of tetrahedra.

作者信息

Torquato S, Jiao Y

机构信息

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041310. doi: 10.1103/PhysRevE.81.041310. Epub 2010 Apr 30.

Abstract

The determination of the densest packings of regular tetrahedra (one of the five Platonic solids) is attracting great attention as evidenced by the rapid pace at which packing records are being broken and the fascinating packing structures that have emerged. Here we provide the most general analytical formulation to date to construct dense periodic packings of tetrahedra with four particles per fundamental cell. This analysis results in six-parameter family of dense tetrahedron packings that includes as special cases recently discovered "dimer" packings of tetrahedra, including the densest known packings with density phi=4000/4671=0.856347... . This study strongly suggests that the latter set of packings are the densest among all packings with a four-particle basis. Whether they are the densest packings of tetrahedra among all packings is an open question, but we offer remarks about this issue. Moreover, we describe a procedure that provides estimates of upper bounds on the maximal density of tetrahedron packings, which could aid in assessing the packing efficiency of candidate dense packings.

摘要

正四面体(五种柏拉图立体之一)的最密堆积的确定正吸引着极大关注,这一点从堆积记录被迅速打破的速度以及所出现的迷人堆积结构中可见一斑。在此,我们给出了迄今为止最通用的解析公式,用于构建每个基本晶胞包含四个粒子的四面体的密集周期性堆积。该分析得出了一个六参数族的密集四面体堆积,其中包括最近发现的四面体“二聚体”堆积这一特殊情况,包括已知密度最高的堆积,其密度(\phi = 4000 / 4671 = 0.856347\cdots) 。这项研究有力地表明,后一组堆积在所有以四个粒子为基元的堆积中是最密的。它们是否是所有堆积中四面体的最密堆积仍是一个未解决的问题,但我们对此问题发表了看法。此外,我们描述了一种程序,该程序可提供四面体堆积最大密度上限的估计值,这有助于评估候选密集堆积的堆积效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验