Suppr超能文献

柏拉图多面体和阿基米德多面体的紧密堆积。

Dense packings of the Platonic and Archimedean solids.

作者信息

Torquato S, Jiao Y

机构信息

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Nature. 2009 Aug 13;460(7257):876-9. doi: 10.1038/nature08239.

Abstract

Dense particle packings have served as useful models of the structures of liquid, glassy and crystalline states of matter, granular media, heterogeneous materials and biological systems. Probing the symmetries and other mathematical properties of the densest packings is a problem of interest in discrete geometry and number theory. Previous work has focused mainly on spherical particles-very little is known about dense polyhedral packings. Here we formulate the generation of dense packings of polyhedra as an optimization problem, using an adaptive fundamental cell subject to periodic boundary conditions (we term this the 'adaptive shrinking cell' scheme). Using a variety of multi-particle initial configurations, we find the densest known packings of the four non-tiling Platonic solids (the tetrahedron, octahedron, dodecahedron and icosahedron) in three-dimensional Euclidean space. The densities are 0.782..., 0.947..., 0.904... and 0.836..., respectively. Unlike the densest tetrahedral packing, which must not be a Bravais lattice packing, the densest packings of the other non-tiling Platonic solids that we obtain are their previously known optimal (Bravais) lattice packings. Combining our simulation results with derived rigorous upper bounds and theoretical arguments leads us to the conjecture that the densest packings of the Platonic and Archimedean solids with central symmetry are given by their corresponding densest lattice packings. This is the analogue of Kepler's sphere conjecture for these solids.

摘要

致密粒子堆积已成为液体、玻璃态和晶态物质、颗粒介质、非均质材料及生物系统结构的有用模型。探究最致密堆积的对称性及其他数学性质是离散几何和数论中一个备受关注的问题。此前的工作主要集中在球形粒子上——对于致密多面体堆积知之甚少。在此,我们将多面体致密堆积的生成表述为一个优化问题,使用受周期边界条件约束的自适应原胞(我们将此称为“自适应收缩胞”方案)。通过使用各种多粒子初始构型,我们找到了三维欧几里得空间中四种非平铺柏拉图立体(四面体、八面体、十二面体和二十面体)的已知最致密堆积。其密度分别为0.782…、0.947…、0.904…和0.836…。与最致密的四面体堆积不同,后者一定不是布拉维晶格堆积,我们得到的其他非平铺柏拉图立体的最致密堆积是它们先前已知的最优(布拉维)晶格堆积。将我们的模拟结果与推导得到的严格上限及理论论证相结合,使我们推测具有中心对称性的柏拉图立体和阿基米德立体的最致密堆积由它们相应的最致密晶格堆积给出。这是这些立体的开普勒球体猜想的类似情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验