Suppr超能文献

主动毛束力学模型中的自发振荡、信号放大与同步

Spontaneous oscillations, signal amplification, and synchronization in a model of active hair bundle mechanics.

作者信息

Han Lijuan, Neiman Alexander B

机构信息

School of Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041913. doi: 10.1103/PhysRevE.81.041913. Epub 2010 Apr 14.

Abstract

We study spontaneous dynamics and signal transduction in a model of active hair bundle mechanics of sensory hair cells. The hair bundle motion is subjected to internal noise resulted from thermal fluctuations and stochastic dynamics of mechanoelectrical transduction ion channels. Similar to other studies we found that in the presence of noise the coherence of stochastic oscillations is maximal at a point on the bifurcation diagram away from the Andronov-Hopf bifurcation and is close to the point of maximum sensitivity of the system to weak periodic mechanical perturbations. Despite decoherent effect of noise the stochastic hair bundle oscillations can be synchronized by external periodic force of few pN amplitude in a finite range of control parameters. We then study effects of receptor potential oscillations on mechanics of the hair bundle and show that the hair bundle oscillations can be synchronized by oscillating receptor voltage. Moreover, using a linear model for the receptor potential we show that bidirectional coupling of the hair bundle and the receptor potential results in significant enhancement of the coherence of spontaneous oscillations and of the sensitivity to the external mechanical perturbations.

摘要

我们研究了感觉毛细胞主动毛束力学模型中的自发动力学和信号转导。毛束运动受到机械电转导离子通道热涨落和随机动力学产生的内部噪声影响。与其他研究类似,我们发现,在存在噪声的情况下,随机振荡的相干性在远离安德罗诺夫 - 霍普夫分岔的分岔图上的某一点处最大,并且接近系统对弱周期性机械扰动的最大敏感点。尽管噪声有去相干作用,但在有限的控制参数范围内,随机毛束振荡可被几皮牛振幅的外部周期性力同步。然后我们研究了受体电位振荡对毛束力学的影响,并表明毛束振荡可通过振荡受体电压来同步。此外,使用受体电位的线性模型,我们表明毛束与受体电位的双向耦合导致自发振荡的相干性和对外部机械扰动的敏感性显著增强。

相似文献

1
Spontaneous oscillations, signal amplification, and synchronization in a model of active hair bundle mechanics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041913. doi: 10.1103/PhysRevE.81.041913. Epub 2010 Apr 14.
2
Effect of bidirectional mechanoelectrical coupling on spontaneous oscillations and sensitivity in a model of hair cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):052704. doi: 10.1103/PhysRevE.90.052704. Epub 2014 Nov 6.
3
Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity.
Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12195-200. doi: 10.1073/pnas.0403020101. Epub 2004 Aug 9.
4
A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels.
Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15321-6. doi: 10.1073/pnas.95.26.15321.
5
Friction from Transduction Channels' Gating Affects Spontaneous Hair-Bundle Oscillations.
Biophys J. 2018 Jan 23;114(2):425-436. doi: 10.1016/j.bpj.2017.11.019.
6
Coupling a sensory hair-cell bundle to cyber clones enhances nonlinear amplification.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8079-84. doi: 10.1073/pnas.0913657107. Epub 2010 Apr 19.
7
Voltage-Mediated Control of Spontaneous Bundle Oscillations in Saccular Hair Cells.
J Neurosci. 2015 Oct 28;35(43):14457-66. doi: 10.1523/JNEUROSCI.1451-15.2015.
8
Amplitude death of coupled hair bundles with stochastic channel noise.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042703. doi: 10.1103/PhysRevE.89.042703. Epub 2014 Apr 4.
9
Theoretical conditions for high-frequency hair bundle oscillations in auditory hair cells.
Biophys J. 2008 Nov 15;95(10):4948-62. doi: 10.1529/biophysj.108.138560. Epub 2008 Aug 1.
10
Spontaneous movements and linear response of a noisy oscillator.
Eur Phys J E Soft Matter. 2009 Aug;29(4):449-60. doi: 10.1140/epje/i2009-10487-5. Epub 2009 Aug 23.

引用本文的文献

1
Complex dynamics of hair bundle of auditory nervous system (II): forced oscillations related to two cases of steady state.
Cogn Neurodyn. 2022 Oct;16(5):1163-1188. doi: 10.1007/s11571-021-09745-3. Epub 2021 Nov 15.
2
Active Biomechanics of Sensory Hair Bundles.
Cold Spring Harb Perspect Med. 2019 Nov 1;9(11):a035014. doi: 10.1101/cshperspect.a035014.
3
Friction from Transduction Channels' Gating Affects Spontaneous Hair-Bundle Oscillations.
Biophys J. 2018 Jan 23;114(2):425-436. doi: 10.1016/j.bpj.2017.11.019.
5
Identification of Bifurcations from Observations of Noisy Biological Oscillators.
Biophys J. 2016 Aug 23;111(4):798-812. doi: 10.1016/j.bpj.2016.07.027.
6
Voltage-Mediated Control of Spontaneous Bundle Oscillations in Saccular Hair Cells.
J Neurosci. 2015 Oct 28;35(43):14457-66. doi: 10.1523/JNEUROSCI.1451-15.2015.
7
Mechanical amplification exhibited by quiescent saccular hair bundles.
Biophys J. 2015 Jan 6;108(1):53-61. doi: 10.1016/j.bpj.2014.11.009.
8
Phase slips in oscillatory hair bundles.
Phys Rev Lett. 2013 Apr 5;110(14):148103. doi: 10.1103/PhysRevLett.110.148103. Epub 2013 Apr 4.
9
Low frequency entrainment of oscillatory bursts in hair cells.
Biophys J. 2013 Apr 16;104(8):1661-9. doi: 10.1016/j.bpj.2013.02.050.
10
Mechanical overstimulation of hair bundles: suppression and recovery of active motility.
PLoS One. 2013;8(3):e58143. doi: 10.1371/journal.pone.0058143. Epub 2013 Mar 7.

本文引用的文献

1
Spontaneous movements and linear response of a noisy oscillator.
Eur Phys J E Soft Matter. 2009 Aug;29(4):449-60. doi: 10.1140/epje/i2009-10487-5. Epub 2009 Aug 23.
2
Spikes and membrane potential oscillations in hair cells generate periodic afferent activity in the frog sacculus.
J Neurosci. 2009 Aug 12;29(32):10025-37. doi: 10.1523/JNEUROSCI.1798-09.2009.
3
Spontaneous otoacoustic emissions in lizards: a comparison of the skink-like lizard families Cordylidae and Gerrhosauridae.
Hear Res. 2009 Sep;255(1-2):58-66. doi: 10.1016/j.heares.2009.05.009. Epub 2009 Jun 16.
4
Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18669-74. doi: 10.1073/pnas.0805752105. Epub 2008 Nov 17.
5
Making an effort to listen: mechanical amplification in the ear.
Neuron. 2008 Aug 28;59(4):530-45. doi: 10.1016/j.neuron.2008.07.012.
6
Theoretical conditions for high-frequency hair bundle oscillations in auditory hair cells.
Biophys J. 2008 Nov 15;95(10):4948-62. doi: 10.1529/biophysj.108.138560. Epub 2008 Aug 1.
7
Two-state approach to stochastic hair bundle dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041901. doi: 10.1103/PhysRevE.77.041901. Epub 2008 Apr 1.
8
The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells.
Biophys J. 2008 Apr 1;94(7):2639-53. doi: 10.1529/biophysj.107.123257. Epub 2008 Jan 4.
9
Unifying the various incarnations of active hair-bundle motility by the vertebrate hair cell.
Biophys J. 2007 Dec 1;93(11):4053-67. doi: 10.1529/biophysj.107.108498. Epub 2007 Aug 17.
10
A virtual hair cell, I: addition of gating spring theory into a 3-D bundle mechanical model.
Biophys J. 2007 Mar 15;92(6):1918-28. doi: 10.1529/biophysj.106.085076. Epub 2007 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验