Suppr超能文献

毛细胞中的尖峰信号和膜电位振荡在蛙球囊内产生周期性传入活动。

Spikes and membrane potential oscillations in hair cells generate periodic afferent activity in the frog sacculus.

作者信息

Rutherford Mark A, Roberts William M

机构信息

Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, 97403, USA.

出版信息

J Neurosci. 2009 Aug 12;29(32):10025-37. doi: 10.1523/JNEUROSCI.1798-09.2009.

Abstract

To look for membrane potential oscillations that may contribute to sensory coding or amplification in the ear, we made whole-cell and perforated-patch recordings from hair cells and postsynaptic afferent neurites in the explanted frog sacculus, with mechanoelectrical transduction (MET) blocked. Small depolarizing holding currents, which may serve to replace the in vivo resting MET current, evoked all-or-none calcium spikes (39-75 mV amplitude) in 37% of hair cells tested, and continuous membrane potential oscillations (14-28 mV; 15-130 Hz) in an additional 14% of cells. Spiking hair cells were on average taller and thinner than nonspiking hair cells, and had smaller outward currents through delayed rectifier channels (I(KV)) and noninactivating calcium-activated potassium channels (I(BK,steady)), and larger inward rectifier currents (I(K1)). Some spiking hair cells fired only a brief train at the onset of a current step, but others could sustain repetitive firing (3-70 Hz). Partial blockade of I(BK) changed the amplitude and frequency of oscillations and spikes, and converted some nonspiking cells into spiking cells. Oscillatory hair cells preferentially amplified sinusoidal stimuli at frequencies near their natural oscillation frequency. Postsynaptic recordings revealed regularly timed bursts of EPSPs in some afferent neurites. EPSP bursts were able to trigger afferent spikes, which may be initiated at the sodium channel cluster located adjacent to the afferent axon's most peripheral myelin segment. These results show that some frog saccular hair cells can generate spontaneous rhythmic activity that may drive periodic background activity in afferent axons.

摘要

为了寻找可能有助于内耳感觉编码或放大的膜电位振荡,我们在离体青蛙球囊的毛细胞和突触后传入神经突上进行了全细胞和穿孔膜片钳记录,此时机械电转导(MET)被阻断。小的去极化钳制电流(可用于替代体内的静息MET电流)在37%的受试毛细胞中诱发了全或无的钙峰(幅度为39 - 75 mV),另外14%的细胞中出现了持续的膜电位振荡(14 - 28 mV;15 - 130 Hz)。产生峰电位的毛细胞平均比不产生峰电位的毛细胞更高更细,通过延迟整流通道(I(KV))和非失活钙激活钾通道(I(BK,steady))的外向电流较小,内向整流电流(I(K1))较大。一些产生峰电位的毛细胞在电流阶跃开始时仅发放短暂的一串动作电位,但其他一些毛细胞能够维持重复发放(3 - 70 Hz)。I(BK)的部分阻断改变了振荡和峰电位的幅度和频率,并将一些不产生峰电位的细胞转变为产生峰电位的细胞。振荡性毛细胞优先放大接近其固有振荡频率的正弦刺激。突触后记录显示,一些传入神经突中有定时规律的兴奋性突触后电位(EPSP)爆发。EPSP爆发能够触发传入峰电位,其可能在位于传入轴突最外周髓鞘段相邻处的钠通道簇处起始。这些结果表明,一些青蛙球囊毛细胞能够产生自发的节律性活动,这可能驱动传入轴突中的周期性背景活动。

相似文献

3
Maturation of firing pattern in chick vestibular nucleus neurons.雏鸡前庭核神经元放电模式的成熟
Neuroscience. 2006 Aug 25;141(2):711-726. doi: 10.1016/j.neuroscience.2006.03.061. Epub 2006 May 11.
9
Release and elementary mechanisms of nitric oxide in hair cells.毛细胞中一氧化氮的释放和基本机制。
J Neurophysiol. 2010 May;103(5):2494-505. doi: 10.1152/jn.00017.2010. Epub 2010 Mar 10.

引用本文的文献

3
Molecular tuning of electroreception in sharks and skates.鲨鱼和鳐鱼电感受的分子调控。
Nature. 2018 Jun;558(7708):122-126. doi: 10.1038/s41586-018-0160-9. Epub 2018 May 30.
5
Heat pulse excitability of vestibular hair cells and afferent neurons.前庭毛细胞和传入神经元的热脉冲兴奋性。
J Neurophysiol. 2016 Aug 1;116(2):825-43. doi: 10.1152/jn.00110.2016. Epub 2016 May 25.
10
Exocytosis in the frog amphibian papilla.蛙类耳石纤毛中的胞吐作用。
J Assoc Res Otolaryngol. 2012 Feb;13(1):39-54. doi: 10.1007/s10162-011-0304-1. Epub 2011 Nov 29.

本文引用的文献

2
Linear and nonlinear processing in hair cells.毛细胞中的线性和非线性处理。
J Exp Biol. 2008 Jun;211(Pt 11):1775-80. doi: 10.1242/jeb.017616.
3
4
Do frogs communicate with seismic signals?青蛙会用地震信号进行交流吗?
Science. 1985 Jan 11;227(4683):187-9. doi: 10.1126/science.227.4683.187.
6
Transfer characteristics of the hair cell's afferent synapse.毛细胞传入突触的传递特性。
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5537-42. doi: 10.1073/pnas.0601103103. Epub 2006 Mar 27.
7
Frequency selectivity of synaptic exocytosis in frog saccular hair cells.青蛙球囊毛细胞中突触囊泡外排的频率选择性
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2898-903. doi: 10.1073/pnas.0511005103. Epub 2006 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验