Suppr超能文献

使用消息传递进行模块化,可扩展地检测具有统计学意义的群落和层次结构。

Scalable detection of statistically significant communities and hierarchies, using message passing for modularity.

作者信息

Zhang Pan, Moore Cristopher

机构信息

Santa Fe Institute, Santa Fe, NM 87501.

Santa Fe Institute, Santa Fe, NM 87501

出版信息

Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18144-9. doi: 10.1073/pnas.1409770111. Epub 2014 Dec 8.

Abstract

Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ''communities'' in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods.

摘要

模块度是衡量社区结构的一种常用方法。然而,最大化模块度可能会导致许多相互竞争的划分,这些划分的模块度几乎相同,但彼此之间的相关性很差。它还可能在不存在“社区”的随机图中产生虚幻的“社区”。我们通过在有限温度下将模块度用作哈密顿量,并使用高效的信念传播算法来获得许多具有高模块度的划分的共识,而不是寻找使模块度最大化的单个划分,来解决这个问题。我们通过分析和数值模拟表明,所提出的算法在由随机块模型生成的网络中一直有效,直至可检测性转变。它在真实网络上也表现良好,在一些先前研究声称不存在社区的网络中揭示了大型社区。最后,我们表明通过递归应用我们的算法,细分社区直到找不到具有统计学意义的子社区,我们可以比以前的方法更有效地检测真实网络中的层次结构。

相似文献

2
Partitioning networks into communities by message passing.通过消息传递将网络划分为社区。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016115. doi: 10.1103/PhysRevE.83.016115. Epub 2011 Jan 31.
3
Benchmark graphs for testing community detection algorithms.用于测试社区检测算法的基准图。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110. doi: 10.1103/PhysRevE.78.046110. Epub 2008 Oct 24.
4
Improved community detection in weighted bipartite networks.加权二分网络中社区检测的改进
R Soc Open Sci. 2016 Jan 20;3(1):140536. doi: 10.1098/rsos.140536. eCollection 2016 Jan.
5
Detecting communities using asymptotical surprise.使用渐近惊奇检测社区。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022816. doi: 10.1103/PhysRevE.92.022816. Epub 2015 Aug 24.
6
A DC programming approach for finding communities in networks.一种用于在网络中寻找社区的直流编程方法。
Neural Comput. 2014 Dec;26(12):2827-54. doi: 10.1162/NECO_a_00673. Epub 2014 Sep 23.
8
Hierarchical community structure in networks.网络中的层次社区结构。
Phys Rev E. 2023 May;107(5-1):054305. doi: 10.1103/PhysRevE.107.054305.
9
Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications.模块化网络随机块模型的渐近分析及其算法应用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066106. doi: 10.1103/PhysRevE.84.066106. Epub 2011 Dec 12.
10
Universal phase transition in community detectability under a stochastic block model.随机块模型下社区可检测性的通用相变
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032804. doi: 10.1103/PhysRevE.91.032804. Epub 2015 Mar 6.

引用本文的文献

1
Network community detection via neural embeddings.通过神经嵌入进行网络社区检测。
Nat Commun. 2024 Nov 1;15(1):9446. doi: 10.1038/s41467-024-52355-w.
2
Is stochastic thermodynamics the key to understanding the energy costs of computation?随机热力学是理解计算能量成本的关键吗?
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2321112121. doi: 10.1073/pnas.2321112121. Epub 2024 Oct 29.
5
Detecting rumor outbreaks in online social networks.检测在线社交网络中的谣言传播。
Soc Netw Anal Min. 2023;13(1):91. doi: 10.1007/s13278-023-01092-x. Epub 2023 Jun 1.

本文引用的文献

1
Model selection for degree-corrected block models.度校正块模型的模型选择
J Stat Mech. 2014 May;2014(5). doi: 10.1088/1742-5468/2014/05/P05007.
2
Spectral redemption in clustering sparse networks.聚类稀疏网络中的谱救赎。
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20935-40. doi: 10.1073/pnas.1312486110. Epub 2013 Nov 25.
3
Consensus clustering in complex networks.复杂网络中的共识聚类。
Sci Rep. 2012;2:336. doi: 10.1038/srep00336. Epub 2012 Mar 27.
4
Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications.模块化网络随机块模型的渐近分析及其算法应用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066106. doi: 10.1103/PhysRevE.84.066106. Epub 2011 Dec 12.
5
Inference and phase transitions in the detection of modules in sparse networks.在稀疏网络模块检测中的推断和相变。
Phys Rev Lett. 2011 Aug 5;107(6):065701. doi: 10.1103/PhysRevLett.107.065701. Epub 2011 Aug 2.
7
Stochastic blockmodels and community structure in networks.网络中的随机块模型与社区结构
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107. doi: 10.1103/PhysRevE.83.016107. Epub 2011 Jan 21.
8
Statistical significance of communities in networks.网络中群落的统计学显著性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046110. doi: 10.1103/PhysRevE.81.046110. Epub 2010 Apr 20.
9
Performance of modularity maximization in practical contexts.模块化最大化在实际环境中的性能。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046106. doi: 10.1103/PhysRevE.81.046106. Epub 2010 Apr 15.
10
Benchmark graphs for testing community detection algorithms.用于测试社区检测算法的基准图。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110. doi: 10.1103/PhysRevE.78.046110. Epub 2008 Oct 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验