Suppr超能文献

具有频率自适应的耦合振子系统的自发同步

Spontaneous synchronization of coupled oscillator systems with frequency adaptation.

作者信息

Taylor Dane, Ott Edward, Restrepo Juan G

机构信息

Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046214. doi: 10.1103/PhysRevE.81.046214. Epub 2010 Apr 27.

Abstract

We study the synchronization of Kuramoto oscillators with all-to-all coupling in the presence of slow, noisy frequency adaptation. In this paper, we develop a model for oscillators, which adapt both their phases and frequencies. It is found that this model naturally reproduces some observed phenomena that are not qualitatively produced by the standard Kuramoto model, such as long waiting times before the synchronization of clapping audiences. By assuming a self-consistent steady state solution, we find three stability regimes for the coupling constant k , separated by critical points k{1} and k{2}: (i) for k<k{1} only the stable incoherent state exists; (ii) for k>k{2}, the incoherent state becomes unstable and only the synchronized state exists; and (iii) for k{1}<k<k{2} both the incoherent and synchronized states are stable. In the bistable regime spontaneous transitions between the incoherent and synchronized states are observed for finite ensembles. These transitions are well described as a stochastic process on the order parameter r undergoing fluctuations due to the system's finite size, leading to the following conclusions: (a) in the bistable regime, the average waiting time of an incoherent-->coherent transition can be predicted by using Kramer's escape time formula and grows exponentially with the number of oscillators; (b) when the incoherent state is unstable (k>k{2}), the average waiting time grows logarithmically with the number of oscillators.

摘要

我们研究了在存在缓慢、有噪声的频率适应情况下,具有全对全耦合的Kuramoto振子的同步问题。在本文中,我们开发了一个振子模型,该模型同时适应其相位和频率。研究发现,该模型自然地再现了一些标准Kuramoto模型无法定性产生的观测现象,例如鼓掌观众同步之前的长时间等待。通过假设一个自洽的稳态解,我们发现耦合常数k存在三种稳定状态,由临界点k{1}和k{2}分隔:(i) 对于k<k{1},仅存在稳定的非相干状态;(ii) 对于k>k{2},非相干状态变得不稳定,仅存在同步状态;(iii) 对于k{1}<k<k{2},非相干状态和同步状态均稳定。在双稳区域,对于有限的振子集合,观察到非相干状态和同步状态之间的自发转变。这些转变可以很好地描述为序参量r上的一个随机过程,该过程由于系统的有限尺寸而经历波动,从而得出以下结论:(a) 在双稳区域,非相干到相干转变的平均等待时间可以通过使用克莱默逃逸时间公式来预测,并且随着振子数量呈指数增长;(b) 当非相干状态不稳定(k>k{2})时,平均等待时间随着振子数量呈对数增长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验