Olmi Simona, Navas Adrian, Boccaletti Stefano, Torcini Alessandro
CNR (Consiglio Nazionale delle Ricerche), Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy and INFN Sez. Firenze, via Sansone, 1, I-50019 Sesto Fiorentino, Italy.
Centre for Biomedical Technology (UPM), 28922 Pozuelo de Alarcón, Madrid, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042905. doi: 10.1103/PhysRevE.90.042905. Epub 2014 Oct 6.
We report finite-size numerical investigations and mean-field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine, for a gaussian distribution of the frequencies, the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic, and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean-field theory developed by Tanaka, Lichtenberg, and Oishi [Physica D 100, 279 (1997)] allows us to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size, and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of whirling oscillators. The presence of these groups of coherently drifting oscillators induces oscillations in the order parameter. We have shown that the transition remains hysteretic even for randomly diluted networks up to a level of connectivity corresponding to a few links per oscillator. Finally, an application to the Italian high-voltage power grid is reported, which reveals the emergence of quasiperiodic oscillations in the order parameter due to the simultaneous presence of many competing whirling clusters.
我们报告了对具有惯性的Kuramoto模型在完全耦合和稀疏系统中的有限尺寸数值研究及平均场分析。特别地,对于频率的高斯分布,我们研究了随着系统尺寸和惯性不断增大,从非相干到相干的转变。对于足够大的惯性,这种转变是滞后的,并且在滞后区域内,各种大小和不同同步水平的锁定振子簇共存。对田中、利希滕贝格和大石[《物理D》100, 279 (1997)]所发展的平均场理论进行修正后,我们能够推导出与这些簇中的每一个相关的同步曲线。我们还通过数值研究了相干解和非相干解的存在极限。观测到相干态所需的最小耦合在很大程度上与系统尺寸无关,并且对于适度大的惯性值就已饱和到一个常数。直到一个临界耦合,非相干态都是可观测的,该临界耦合的值对于大惯性和有限系统尺寸会饱和,而在热力学极限下,这个临界值与质量成比例地发散。通过增加惯性,转变变得更加复杂,并且同步通过旋转振子簇的出现而发生。这些相干漂移振子组的存在会在序参量中引起振荡。我们已经表明,即使对于随机稀疏网络,直到每个振子有几条链路的连通性水平,这种转变仍然是滞后的。最后,报告了对意大利高压电网的一个应用,它揭示了由于许多相互竞争的旋转簇同时存在,序参量中出现了准周期振荡。