Suppr超能文献

具有漂移频率的全局耦合相位振子群体中的集体同步。

Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies.

作者信息

Rougemont Jacques, Naef Felix

机构信息

Vital-IT, Swiss Institute of Bioinformatics, CIG-UNIL, 1015 Lausanne, Switzerland.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jan;73(1 Pt 1):011104. doi: 10.1103/PhysRevE.73.011104. Epub 2006 Jan 18.

Abstract

We generalize the Kuramoto model for coupled phase oscillators by allowing the frequencies to drift in time according to Ornstein-Uhlenbeck dynamics. Such drifting frequencies were recently measured in cellular populations of circadian oscillator and inspired our work. Linear stability analysis of the Fokker-Planck equation for an infinite population is amenable to exact solution and we show that the incoherent state is unstable past a critical coupling strength K(c)(gamma,sigma(f)), where gamma is the inverse characteristic drifting time and sigma(f) the asymptotic frequency dispersion. Expectedly K(c)agrees with the noisy Kuramoto model in the large gamma (Schmolukowski) limit but increases slower as gamma decreases. Asymptotic expansion of the solution for gamma-->0 shows that the noiseless Kuramoto model with Gaussian frequency distribution is recovered in that limit. Thus varying a single parameter allows us to interpolate smoothly between two regimes: one dominated by the frequency dispersion and the other by phase diffusion.

摘要

我们通过允许频率根据奥恩斯坦 - 乌伦贝克动力学随时间漂移,推广了耦合相位振子的Kuramoto模型。这种漂移频率最近在昼夜节律振荡器的细胞群体中被测量到,并启发了我们的工作。对无限群体的福克 - 普朗克方程进行线性稳定性分析易于得到精确解,并且我们表明,在超过临界耦合强度(K(c)(\gamma,\sigma(f)))时,非相干态是不稳定的,其中(\gamma)是特征漂移时间的倒数,(\sigma(f))是渐近频率色散。不出所料,在大(\gamma)(施莫卢霍夫斯基)极限下,(K(c))与有噪声的Kuramoto模型一致,但随着(\gamma)减小,其增长速度变慢。对于(\gamma \to 0)时解的渐近展开表明,在该极限下恢复了具有高斯频率分布的无噪声Kuramoto模型。因此,改变单个参数使我们能够在两种状态之间平滑插值:一种由频率色散主导,另一种由相位扩散主导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验