Suppr超能文献

在量子蒙特卡罗模拟中测量 Renyi 纠缠熵。

Measuring Renyi entanglement entropy in quantum Monte Carlo simulations.

机构信息

Microsoft Research, Station Q, CNSI Building, University of California, Santa Barbara, California 93106, USA.

出版信息

Phys Rev Lett. 2010 Apr 16;104(15):157201. doi: 10.1103/PhysRevLett.104.157201. Epub 2010 Apr 14.

Abstract

We develop a quantum Monte Carlo procedure, in the valence bond basis, to measure the Renyi entanglement entropy of a many-body ground state as the expectation value of a unitary Swap operator acting on two copies of the system. An improved estimator involving the ratio of Swap operators for different subregions enables convergence of the entropy in a simulation time polynomial in the system size. We demonstrate convergence of the Renyi entropy to exact results for a Heisenberg chain. Finally, we calculate the scaling of the Renyi entropy in the two-dimensional Heisenberg model and confirm that the Néel ground state obeys the expected area law for systems up to linear size L=32.

摘要

我们开发了一种量子蒙特卡罗程序,在价键基下,通过对两个系统副本上的单位 Swap 算子进行作用,来测量多体基态的 Renyi 纠缠熵。一个涉及不同子区域 Swap 算子比的改进估计器,可以使熵在系统尺寸的多项式模拟时间内收敛。我们证明了海森堡链的 Renyi 熵收敛到精确结果。最后,我们计算了二维海森堡模型的 Renyi 熵的标度,并确认对于线性尺寸 L=32 的系统,Neel 基态遵守预期的面积定律。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验