Microsoft Research, Station Q, CNSI Building, University of California, Santa Barbara, California 93106, USA.
Phys Rev Lett. 2010 Apr 16;104(15):157201. doi: 10.1103/PhysRevLett.104.157201. Epub 2010 Apr 14.
We develop a quantum Monte Carlo procedure, in the valence bond basis, to measure the Renyi entanglement entropy of a many-body ground state as the expectation value of a unitary Swap operator acting on two copies of the system. An improved estimator involving the ratio of Swap operators for different subregions enables convergence of the entropy in a simulation time polynomial in the system size. We demonstrate convergence of the Renyi entropy to exact results for a Heisenberg chain. Finally, we calculate the scaling of the Renyi entropy in the two-dimensional Heisenberg model and confirm that the Néel ground state obeys the expected area law for systems up to linear size L=32.
我们开发了一种量子蒙特卡罗程序,在价键基下,通过对两个系统副本上的单位 Swap 算子进行作用,来测量多体基态的 Renyi 纠缠熵。一个涉及不同子区域 Swap 算子比的改进估计器,可以使熵在系统尺寸的多项式模拟时间内收敛。我们证明了海森堡链的 Renyi 熵收敛到精确结果。最后,我们计算了二维海森堡模型的 Renyi 熵的标度,并确认对于线性尺寸 L=32 的系统,Neel 基态遵守预期的面积定律。