Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev Lett. 2010 Apr 30;104(17):175501. doi: 10.1103/PhysRevLett.104.175501. Epub 2010 Apr 27.
We describe a method to simulate on macroscopic time scales the stress relaxation in an atomistic nanocrystal model under an imposed strain. Using a metadynamics algorithm for transition state pathway sampling we follow the full evolution of a classical anelastic relaxation event, with relaxation times governed by the nanoscale microstructure imperfections in the solid. We show that probing this sensitive variation leads to mechanistic insights that reveal a direct correlation between system-level relaxation behavior and localized atomic displacements in the vicinity of the nanostructured defects, in turn implying a unit mechanism for self-organized plastic response. This suggests a new class of measurements in which the microstructure imperfections are characterized and matched to predictive simulations enabled by the present method.
我们描述了一种方法,可以在给定应变下模拟原子纳米晶体模型在宏观时间尺度上的应力松弛。通过使用过渡态路径采样的元动力学算法,我们跟踪经典粘弹性弛豫事件的完整演化,弛豫时间由固体中的纳米级微观结构缺陷控制。我们表明,探测这种敏感变化会产生机制性的见解,揭示系统级松弛行为与纳米结构缺陷附近局部原子位移之间的直接相关性,进而意味着自组织塑性响应的单一机制。这表明可以进行一类新的测量,其中对微观结构缺陷进行特征化并与本方法所支持的预测模拟相匹配。