Suppr超能文献

通过分子模拟理解非晶质蠕动的机制。

Understanding the mechanisms of amorphous creep through molecular simulation.

机构信息

Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.

Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;

出版信息

Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13631-13636. doi: 10.1073/pnas.1708618114. Epub 2017 Dec 11.

Abstract

Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

摘要

使用基于元动力学的原子方法,在实验时间尺度上模拟了金属玻璃薄膜的蠕变分子过程。分析原子应变和非仿射原子位移的时空演化,揭示了在应力和热激活下,非晶态蠕变的原子级变形和流动过程的细节。从模拟结果中,我们在纳米尺度上进行了空间分辨,并在几分之一秒的时间增量上进行了时间分辨,得出了对蠕变速率随应力变化的著名规律的力学解释。我们还构建了一个变形图,描绘了在低应力和高温下扩散蠕变的主要状态和在高应力下的变形蠕变。我们的发现验证了两种非晶态塑性机制的原始模型的相关性:一种侧重于通过自由体积的原子扩散,另一种侧重于应力诱导的剪切变形。这些过程通过动态异质波动非线性耦合,这些波动特征是远离平衡系统的慢动力学。

相似文献

1
Understanding the mechanisms of amorphous creep through molecular simulation.通过分子模拟理解非晶质蠕动的机制。
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13631-13636. doi: 10.1073/pnas.1708618114. Epub 2017 Dec 11.
2
Potential energy landscape activations governing plastic flows in glass rheology.控制玻璃流变学中塑性流动的势能景观激活。
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18790-18797. doi: 10.1073/pnas.1907317116. Epub 2019 Sep 4.
9
Atomistic simulation of creep in a nanocrystal.纳米晶体中蠕变的原子级模拟。
Phys Rev Lett. 2010 Apr 30;104(17):175501. doi: 10.1103/PhysRevLett.104.175501. Epub 2010 Apr 27.

本文引用的文献

1
Yielding transitions and grain-size effects in dislocation theory.位错理论中的屈服转变与晶粒尺寸效应
Phys Rev E. 2017 Mar;95(3-1):033004. doi: 10.1103/PhysRevE.95.033004. Epub 2017 Mar 24.
2
Active microrheology in a colloidal glass.胶体玻璃中的主动微流变学。
Phys Rev E. 2016 Oct;94(4-1):042602. doi: 10.1103/PhysRevE.94.042602. Epub 2016 Oct 11.
3
Shear-transformation-zone theory of yielding in athermal amorphous materials.无热非晶材料屈服的剪切转变区理论。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012318. doi: 10.1103/PhysRevE.92.012318. Epub 2015 Jul 22.
5
Analogy between glass rheology and crystal plasticity: yielding at high strain rate.
Soft Matter. 2013 Oct 28;9(40):9511-4. doi: 10.1039/c3sm50337b.
6
Surface shear-transformation zones in amorphous solids.非晶态固体中的表面剪切转变区
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):012311. doi: 10.1103/PhysRevE.90.012311. Epub 2014 Jul 31.
7
Bulk metallic glasses deform via slip avalanches.块状金属玻璃通过滑移雪崩变形。
Phys Rev Lett. 2014 Apr 18;112(15):155501. doi: 10.1103/PhysRevLett.112.155501. Epub 2014 Apr 14.
10
Self-learning metabasin escape algorithm for supercooled liquids.用于过冷液体的自学习亚盆地逃逸算法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016710. doi: 10.1103/PhysRevE.86.016710. Epub 2012 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验