Rottler Jörg
Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1, Canada.
J Phys Condens Matter. 2009 Nov 18;21(46):463101. doi: 10.1088/0953-8984/21/46/463101. Epub 2009 Oct 26.
Over the past 25 years, molecular modeling and simulations have provided important insights into the physics of deformation and fracture of glassy polymers. This review presents an overview of key results discussed in the context of experimentally observed polymer behavior. Both atomistic and coarse-grained polymer models have been used in different deformation protocols to study elastic properties, shear yielding, creep, physical aging, strain hardening and crazing. Simulations reproduce most of the macroscopic features of plasticity in polymer glasses such as stress-strain relations and creep response, and reveal information about the underlying atomistic processes. Trends of the shear yield stress with loading conditions, temperature and strain rate, and the atomistic dynamics under load have been systematically explored. Most polymers undergo physical aging, which leads to a history-dependent mechanical response. Simulations of strain hardening and crazing demonstrate the nature of polymer entanglements in the glassy state and the role of local plasticity and provide insight into the origin of fracture toughness of amorphous polymers.
在过去25年里,分子建模与模拟为玻璃态聚合物的变形与断裂物理提供了重要见解。本综述概述了在实验观察到的聚合物行为背景下所讨论的关键结果。原子模型和粗粒化聚合物模型均已用于不同的变形方案,以研究弹性性质、剪切屈服、蠕变、物理老化、应变硬化和银纹化。模拟再现了聚合物玻璃中塑性的大部分宏观特征,如应力-应变关系和蠕变响应,并揭示了有关潜在原子过程的信息。已系统地探究了剪切屈服应力随加载条件、温度和应变速率的变化趋势以及加载下的原子动力学。大多数聚合物会发生物理老化,这会导致与历史相关的力学响应。应变硬化和银纹化的模拟证明了玻璃态下聚合物缠结的本质以及局部塑性的作用,并深入了解了非晶态聚合物断裂韧性的起源。