Suppr超能文献

高钾血症抗纤维颤动作用的机制在豚鼠心脏中的作用。

Mechanisms underlying the antifibrillatory action of hyperkalemia in Guinea pig hearts.

机构信息

Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Biophys J. 2010 May 19;98(10):2091-101. doi: 10.1016/j.bpj.2010.02.011.

Abstract

Hyperkalemia increases the organization of ventricular fibrillation (VF) and may also terminate it by mechanisms that remain unclear. We previously showed that the left-to-right heterogeneity of excitation and wave fragmentation present in fibrillating guinea pig hearts is mediated by chamber-specific outward conductance differences in the inward rectifier potassium current (I(K1)). We hypothesized that hyperkalemia-mediated depolarization of the reversal potential of I(K1) (E(K1)) would reduce excitability and thereby reduce VF excitation frequencies and left-to-right heterogeneity. We induced VF in Langendroff-perfused guinea pig hearts and increased the extracellular K(+) concentration (K(+)) from control (4 mM) to 7 mM (n = 5) or 10 mM (n = 7). Optical mapping enabled spatial characterization of excitation dominant frequencies (DFs) and wavebreaks, and identification of sustained rotors (>4 cycles). During VF, hyperkalemia reduced the maximum DF of the left ventricle (LV) from 31.5 +/- 4.7 Hz (control) to 23.0 +/- 4.7 Hz (7.0 mM) or 19.5 +/- 3.6 Hz (10.0 mM; p < 0.006), the left-to-right DF gradient from 14.7 +/- 3.6 Hz (control) to 4.4 +/- 1.3 Hz (7 mM) and 3.2 +/- 1.4 Hz (10 mM), the number of DF domains, and the incidence of wavebreak in the LV and interventricular regions. During 10 mM K(+), the rotation period and core area of sustained rotors in the LV increased, and VF often terminated. Two-dimensional computer simulations mimicking experimental VF predicted that clamping E(K1) to normokalemic values during simulated hyperkalemia prevented all of the hyperkalemia-induced VF changes. During hyperkalemia, despite the shortening of the action potential duration, depolarization of E(K1) increased refractoriness, leading to a slowing of VF, which effectively superseded the influence of I(K1) conductance differences on VF organization. This reduced the left-to-right excitation gradients and heterogeneous wavebreak formation. Overall, these results provide, to our knowledge, the first direct mechanistic insight into the organization and/or termination of VF by hyperkalemia.

摘要

高钾血症会增加心室颤动(VF)的组织程度,其通过目前尚不清楚的机制也可能终止 VF。我们之前曾表明,在纤维颤动的豚鼠心脏中存在的兴奋和波碎裂的左右不均一性是由内向整流钾电流(I(K1))的腔内特异性外向传导差异介导的。我们假设,高钾血症介导的 I(K1)(E(K1))反转电位去极化将降低兴奋性,从而降低 VF 激发频率和左右不均一性。我们在 Langendroff 灌流的豚鼠心脏中诱导 VF,并将细胞外 K(+)浓度(K(+))从对照(4 mM)增加到 7 mM(n = 5)或 10 mM(n = 7)。光学映射能够对兴奋主导频率(DFs)和波破裂进行空间特征描述,并确定持续的转子(>4 个周期)。在 VF 期间,高钾血症将左心室(LV)的最大 DF 从 31.5 +/- 4.7 Hz(对照)降低到 23.0 +/- 4.7 Hz(7.0 mM)或 19.5 +/- 3.6 Hz(10.0 mM;p < 0.006),从 14.7 +/- 3.6 Hz(对照)降低到 4.4 +/- 1.3 Hz(7 mM)和 3.2 +/- 1.4 Hz(10 mM)的左右 DF 梯度,DF 域的数量,以及 LV 和室间区域的波破裂发生率。在 10 mM K(+)期间,LV 中持续转子的旋转周期和核心区域增加,VF 经常终止。模拟实验 VF 的二维计算机模拟预测,在模拟高钾血症期间将 E(K1)钳制到正常血钾值可防止所有高钾血症引起的 VF 变化。在高钾血症期间,尽管动作电位持续时间缩短,但 E(K1)的去极化增加了不应期,导致 VF 减慢,这有效地取代了 I(K1)电导差异对 VF 组织的影响。这降低了左右兴奋梯度和异质波破裂形成。总的来说,这些结果提供了,据我们所知,高钾血症对 VF 组织和/或终止的第一个直接机制见解。

相似文献

1
Mechanisms underlying the antifibrillatory action of hyperkalemia in Guinea pig hearts.
Biophys J. 2010 May 19;98(10):2091-101. doi: 10.1016/j.bpj.2010.02.011.
2
Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart.
J Cardiovasc Electrophysiol. 2003 Jun;14(6):621-31. doi: 10.1046/j.1540-8167.2003.03006.x.
3
Up-regulation of the inward rectifier K+ current (I K1) in the mouse heart accelerates and stabilizes rotors.
J Physiol. 2007 Jan 1;578(Pt 1):315-26. doi: 10.1113/jphysiol.2006.121475. Epub 2006 Nov 9.
5
Heterogeneous ventricular chamber response to hypokalemia and inward rectifier potassium channel blockade underlies bifurcated T wave in guinea pig.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H3043-51. doi: 10.1152/ajpheart.01312.2006. Epub 2007 Feb 16.
6
The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis.
Heart Rhythm. 2005 Mar;2(3):316-24. doi: 10.1016/j.hrthm.2004.11.012.
7
Ventricular fibrillation during no-flow global ischemia in isolated rabbit hearts.
J Cardiovasc Electrophysiol. 2006 Oct;17(10):1112-20. doi: 10.1111/j.1540-8167.2006.00557.x. Epub 2006 Jul 18.
8
Does the combination of hyperkalemia and KATP activation determine excitation rate gradient and electrical failure in the globally ischemic fibrillating heart?
Am J Physiol Heart Circ Physiol. 2013 Sep 15;305(6):H903-12. doi: 10.1152/ajpheart.00184.2013. Epub 2013 Jul 19.
9
Mother rotors and the mechanisms of D600-induced type 2 ventricular fibrillation.
Circulation. 2004 Oct 12;110(15):2110-8. doi: 10.1161/01.CIR.0000143834.51102.91. Epub 2004 Oct 4.

引用本文的文献

1
Sex differences in cardiac dynamics during myocardial ischemia using a single cell approach.
Sci Rep. 2025 Mar 17;15(1):9153. doi: 10.1038/s41598-025-94055-5.
3
The transient outward potassium current plays a key role in spiral wave breakup in ventricular tissue.
Am J Physiol Heart Circ Physiol. 2021 Feb 1;320(2):H826-H837. doi: 10.1152/ajpheart.00608.2020. Epub 2021 Jan 1.
5
Mechanisms by Which Ranolazine Terminates Paroxysmal but Not Persistent Atrial Fibrillation.
Circ Arrhythm Electrophysiol. 2019 Oct;12(10):e005557. doi: 10.1161/CIRCEP.117.005557. Epub 2019 Oct 9.
6
Modeling and simulation of cardiac electric activity in a human cardiac tissue with multiple ischemic zones.
J Math Biol. 2019 Sep;79(4):1551-1586. doi: 10.1007/s00285-019-01403-x. Epub 2019 Jul 27.
7
Self-terminated long-lasting ventricular fibrillation: What is the mechanism?
J Cardiol Cases. 2014 Aug 6;10(4):136-139. doi: 10.1016/j.jccase.2014.06.005. eCollection 2014 Oct.
8
Heart Rate and Extracellular Sodium and Potassium Modulation of Gap Junction Mediated Conduction in Guinea Pigs.
Front Physiol. 2016 Feb 2;7:16. doi: 10.3389/fphys.2016.00016. eCollection 2016.
9
Mechanisms for the Termination of Atrial Fibrillation by Localized Ablation: Computational and Clinical Studies.
Circ Arrhythm Electrophysiol. 2015 Dec;8(6):1325-33. doi: 10.1161/CIRCEP.115.002956. Epub 2015 Sep 10.
10
Ionic mechanisms of arrhythmogenesis.
Trends Cardiovasc Med. 2015 Aug;25(6):487-96. doi: 10.1016/j.tcm.2015.01.005. Epub 2015 Jan 16.

本文引用的文献

1
Serum potassium and clinical outcomes in the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS).
Circulation. 2008 Oct 14;118(16):1643-50. doi: 10.1161/CIRCULATIONAHA.108.778811. Epub 2008 Sep 29.
2
Aborted sudden death from sustained ventricular fibrillation.
Heart Rhythm. 2008 Aug;5(8):1198-200. doi: 10.1016/j.hrthm.2008.04.005. Epub 2008 Apr 11.
3
Heterogeneity of ventricular fibrillation dominant frequency during global ischemia in isolated rabbit hearts.
J Cardiovasc Electrophysiol. 2007 Aug;18(8):854-61. doi: 10.1111/j.1540-8167.2007.00867.x. Epub 2007 Jun 6.
4
Up-regulation of the inward rectifier K+ current (I K1) in the mouse heart accelerates and stabilizes rotors.
J Physiol. 2007 Jan 1;578(Pt 1):315-26. doi: 10.1113/jphysiol.2006.121475. Epub 2006 Nov 9.
5
Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation.
Biophys J. 2005 Jun;88(6):3806-21. doi: 10.1529/biophysj.105.060459. Epub 2005 Mar 25.
6
Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current.
Circ Res. 2004 May 28;94(10):1332-9. doi: 10.1161/01.RES.0000128408.66946.67. Epub 2004 Apr 15.
7
Sudden death associated with short-QT syndrome linked to mutations in HERG.
Circulation. 2004 Jan 6;109(1):30-5. doi: 10.1161/01.CIR.0000109482.92774.3A. Epub 2003 Dec 15.
8
Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart.
J Cardiovasc Electrophysiol. 2003 Jun;14(6):621-31. doi: 10.1046/j.1540-8167.2003.03006.x.
10
Effects of [K(+)](o) on electrical restitution and activation dynamics during ventricular fibrillation.
Am J Physiol Heart Circ Physiol. 2000 Dec;279(6):H2665-72. doi: 10.1152/ajpheart.2000.279.6.H2665.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验