Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA.
Biophys J. 2010 May 19;98(10):2091-101. doi: 10.1016/j.bpj.2010.02.011.
Hyperkalemia increases the organization of ventricular fibrillation (VF) and may also terminate it by mechanisms that remain unclear. We previously showed that the left-to-right heterogeneity of excitation and wave fragmentation present in fibrillating guinea pig hearts is mediated by chamber-specific outward conductance differences in the inward rectifier potassium current (I(K1)). We hypothesized that hyperkalemia-mediated depolarization of the reversal potential of I(K1) (E(K1)) would reduce excitability and thereby reduce VF excitation frequencies and left-to-right heterogeneity. We induced VF in Langendroff-perfused guinea pig hearts and increased the extracellular K(+) concentration (K(+)) from control (4 mM) to 7 mM (n = 5) or 10 mM (n = 7). Optical mapping enabled spatial characterization of excitation dominant frequencies (DFs) and wavebreaks, and identification of sustained rotors (>4 cycles). During VF, hyperkalemia reduced the maximum DF of the left ventricle (LV) from 31.5 +/- 4.7 Hz (control) to 23.0 +/- 4.7 Hz (7.0 mM) or 19.5 +/- 3.6 Hz (10.0 mM; p < 0.006), the left-to-right DF gradient from 14.7 +/- 3.6 Hz (control) to 4.4 +/- 1.3 Hz (7 mM) and 3.2 +/- 1.4 Hz (10 mM), the number of DF domains, and the incidence of wavebreak in the LV and interventricular regions. During 10 mM K(+), the rotation period and core area of sustained rotors in the LV increased, and VF often terminated. Two-dimensional computer simulations mimicking experimental VF predicted that clamping E(K1) to normokalemic values during simulated hyperkalemia prevented all of the hyperkalemia-induced VF changes. During hyperkalemia, despite the shortening of the action potential duration, depolarization of E(K1) increased refractoriness, leading to a slowing of VF, which effectively superseded the influence of I(K1) conductance differences on VF organization. This reduced the left-to-right excitation gradients and heterogeneous wavebreak formation. Overall, these results provide, to our knowledge, the first direct mechanistic insight into the organization and/or termination of VF by hyperkalemia.
高钾血症会增加心室颤动(VF)的组织程度,其通过目前尚不清楚的机制也可能终止 VF。我们之前曾表明,在纤维颤动的豚鼠心脏中存在的兴奋和波碎裂的左右不均一性是由内向整流钾电流(I(K1))的腔内特异性外向传导差异介导的。我们假设,高钾血症介导的 I(K1)(E(K1))反转电位去极化将降低兴奋性,从而降低 VF 激发频率和左右不均一性。我们在 Langendroff 灌流的豚鼠心脏中诱导 VF,并将细胞外 K(+)浓度(K(+))从对照(4 mM)增加到 7 mM(n = 5)或 10 mM(n = 7)。光学映射能够对兴奋主导频率(DFs)和波破裂进行空间特征描述,并确定持续的转子(>4 个周期)。在 VF 期间,高钾血症将左心室(LV)的最大 DF 从 31.5 +/- 4.7 Hz(对照)降低到 23.0 +/- 4.7 Hz(7.0 mM)或 19.5 +/- 3.6 Hz(10.0 mM;p < 0.006),从 14.7 +/- 3.6 Hz(对照)降低到 4.4 +/- 1.3 Hz(7 mM)和 3.2 +/- 1.4 Hz(10 mM)的左右 DF 梯度,DF 域的数量,以及 LV 和室间区域的波破裂发生率。在 10 mM K(+)期间,LV 中持续转子的旋转周期和核心区域增加,VF 经常终止。模拟实验 VF 的二维计算机模拟预测,在模拟高钾血症期间将 E(K1)钳制到正常血钾值可防止所有高钾血症引起的 VF 变化。在高钾血症期间,尽管动作电位持续时间缩短,但 E(K1)的去极化增加了不应期,导致 VF 减慢,这有效地取代了 I(K1)电导差异对 VF 组织的影响。这降低了左右兴奋梯度和异质波破裂形成。总的来说,这些结果提供了,据我们所知,高钾血症对 VF 组织和/或终止的第一个直接机制见解。