Suppr超能文献

利用热力学自由能模拟进行蛋白质热稳定性计算。

Protein thermostability calculations using alchemical free energy simulations.

机构信息

Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

Biophys J. 2010 May 19;98(10):2309-16. doi: 10.1016/j.bpj.2010.01.051.

Abstract

Thermal stability of proteins is crucial for both biotechnological and therapeutic applications. Rational protein engineering therefore frequently aims at increasing thermal stability by introducing stabilizing mutations. The accurate prediction of the thermodynamic consequences caused by mutations, however, is highly challenging as thermal stability changes are caused by alterations in the free energy of folding. Growing computational power, however, increasingly allows us to use alchemical free energy simulations, such as free energy perturbation or thermodynamic integration, to calculate free energy differences with relatively high accuracy. In this article, we present an automated protocol for setting up alchemical free energy calculations for mutations of naturally occurring amino acids (except for proline) that allows an unprecedented, automated screening of large mutant libraries. To validate the developed protocol, we calculated thermodynamic stability differences for 109 mutations in the microbial Ribonuclease Barnase. The obtained quantitative agreement with experimental data illustrates the potential of the approach in protein engineering and design.

摘要

蛋白质的热稳定性对于生物技术和治疗应用都至关重要。因此,理性的蛋白质工程经常通过引入稳定突变来提高热稳定性。然而,准确预测突变引起的热力学后果极具挑战性,因为热稳定性的变化是由折叠自由能的改变引起的。随着计算能力的不断提高,我们越来越多地可以使用基于“加和”原理的自由能模拟方法,如自由能微扰或热力学积分,以相对较高的精度计算自由能差异。在本文中,我们提出了一种用于天然存在的氨基酸(脯氨酸除外)突变的加和自由能计算的自动化方案,该方案允许对大型突变文库进行前所未有的自动化筛选。为了验证所开发方案的有效性,我们计算了微生物核糖核酸酶 Barnase 中 109 个突变的热力学稳定性差异。与实验数据的定量一致性表明了该方法在蛋白质工程和设计中的潜力。

相似文献

1
Protein thermostability calculations using alchemical free energy simulations.
Biophys J. 2010 May 19;98(10):2309-16. doi: 10.1016/j.bpj.2010.01.051.
2
pmx: Automated protein structure and topology generation for alchemical perturbations.
J Comput Chem. 2015 Feb 15;36(5):348-54. doi: 10.1002/jcc.23804. Epub 2014 Dec 8.
3
A strategy for proline and glycine mutations to proteins with alchemical free energy calculations.
J Comput Chem. 2021 Jun 5;42(15):1088-1094. doi: 10.1002/jcc.26525. Epub 2021 Apr 12.
5
Free Energy Perturbation Calculations of the Thermodynamics of Protein Side-Chain Mutations.
J Mol Biol. 2017 Apr 7;429(7):923-929. doi: 10.1016/j.jmb.2017.03.002. Epub 2017 Mar 6.
7
Alchemical Free Energy Calculations for Nucleotide Mutations in Protein-DNA Complexes.
J Chem Theory Comput. 2017 Dec 12;13(12):6275-6289. doi: 10.1021/acs.jctc.7b00849. Epub 2017 Nov 29.
8
Application of an alchemical free energy method for the prediction of thermostable DuraPETase variants.
Appl Microbiol Biotechnol. 2024 Apr 21;108(1):305. doi: 10.1007/s00253-024-13144-z.
9
Absolute Alchemical Free Energy Calculations for Ligand Binding: A Beginner's Guide.
Methods Mol Biol. 2018;1762:199-232. doi: 10.1007/978-1-4939-7756-7_11.
10
New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations.
J Chem Theory Comput. 2012 Jul 10;8(7):2373-82. doi: 10.1021/ct300220p. Epub 2012 Jun 6.

引用本文的文献

1
OrgNet: orientation-gnostic protein stability assessment using convolutional neural networks.
Bioinformatics. 2025 Jul 1;41(Supplement_1):i458-i465. doi: 10.1093/bioinformatics/btaf252.
3
Predicted functional consequences of WNT ligand mutations in colorectal cancer.
Biophys J. 2025 May 6;124(9):1496-1505. doi: 10.1016/j.bpj.2025.03.030. Epub 2025 Mar 31.
5
Dimerization of the deaminase domain and locking interactions with Cas9 boost base editing efficiency in ABE8e.
Nucleic Acids Res. 2024 Dec 11;52(22):13931-13944. doi: 10.1093/nar/gkae1066.
6
Beyond IC50-A computational dynamic model of drug resistance in enzyme inhibition treatment.
PLoS Comput Biol. 2024 Nov 7;20(11):e1012570. doi: 10.1371/journal.pcbi.1012570. eCollection 2024 Nov.
7
Simulation-driven design of stabilized SARS-CoV-2 spike S2 immunogens.
Nat Commun. 2024 Aug 27;15(1):7370. doi: 10.1038/s41467-024-50976-9.
8
How to Sample Dozens of Substitutions per Site with λ Dynamics.
J Chem Theory Comput. 2024 Jul 23;20(14):6098-6110. doi: 10.1021/acs.jctc.4c00514. Epub 2024 Jul 8.
9
Inhibition of DEF-p65 Interactions as a Potential Avenue to Suppress Tumor Growth in Pancreatic Cancer.
Adv Sci (Weinh). 2024 Jul;11(28):e2401845. doi: 10.1002/advs.202401845. Epub 2024 May 17.
10
Application of an alchemical free energy method for the prediction of thermostable DuraPETase variants.
Appl Microbiol Biotechnol. 2024 Apr 21;108(1):305. doi: 10.1007/s00253-024-13144-z.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Design of therapeutic proteins with enhanced stability.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11937-42. doi: 10.1073/pnas.0904191106. Epub 2009 Jul 1.
3
Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details.
Protein Eng Des Sel. 2009 Sep;22(9):553-60. doi: 10.1093/protein/gzp030. Epub 2009 Jun 26.
4
Lambda-dynamics free energy simulation methods.
J Comput Chem. 2009 Aug;30(11):1692-700. doi: 10.1002/jcc.21295.
5
Computational structure-based redesign of enzyme activity.
Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3764-9. doi: 10.1073/pnas.0900266106. Epub 2009 Feb 19.
6
Predicting free energy changes using structural ensembles.
Nat Methods. 2009 Jan;6(1):3-4. doi: 10.1038/nmeth0109-3.
8
Kemp elimination catalysts by computational enzyme design.
Nature. 2008 May 8;453(7192):190-5. doi: 10.1038/nature06879. Epub 2008 Mar 19.
9
De novo computational design of retro-aldol enzymes.
Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验