Department of Clinical Pharmacology, Flinders University School of Medicine, Adelaide, Australia.
J Pharmacol Exp Ther. 2010 Aug;334(2):609-18. doi: 10.1124/jpet.110.167916. Epub 2010 May 18.
Because codeine (COD) is eliminated primarily via glucuronidation, factors that alter COD glucuronide formation potentially affect the proportion of the dose converted to the pharmacologically active metabolite morphine. Thus, in vitro-in vivo extrapolation approaches were used to identify potential drug-drug interactions arising from inhibition of COD glucuronidation in humans. Initial studies characterized the kinetics of COD-6-glucuronide (C6G) formation by human liver microsomes (HLM) and demonstrated an 88% reduction in the Michaelis constant (K(m)) (0.29 versus 2.32 mM) for incubations performed in the presence of 2% bovine serum albumin (BSA). Of 13 recombinant UDP-glucuronosyltransferase (UGT) enzymes screened for COD glucuronidation activity, only UGT2B4 and UGT2B7 exhibited activity. The respective S(50) values (0.32 and 0.27 mM) generated in the presence of BSA were comparable with the mean K(m) observed in HLM. Known inhibitors of UGT2B7 activity in vitro or in vivo and drugs marketed as compound formulations with COD were investigated for inhibition of C6G formation by HLM. Inhibition screening identified potential interactions with dextropropoxyphene, fluconazole, ketoconazole, and methadone. Inhibitor constant values generated for dextropropoxyphene (3.5 microM), fluconazole (202 microM), ketoconazole (0.66 microM), and methadone (0.32 microM) predicted 1.60- to 3.66-fold increases in the area under the drug plasma concentration-time curve ratio for COD in vivo. Whereas fluconazole and ketoconazole inhibited UGT2B4- and UGT2B7-catalyzed COD glucuronidation to a similar extent, inhibition by dextropropoxyphene and methadone resulted largely from an effect on UGT2B4. Interactions with dextropropoxyphene, fluconazole, ketoconazole, and methadone potentially affect the intensity and duration of COD analgesia.
由于可待因(COD)主要通过葡萄糖醛酸化消除,因此改变 COD 葡萄糖醛酸形成的因素可能会影响剂量转化为具有药理活性代谢物吗啡的比例。因此,采用体外-体内外推方法来鉴定人类中由于抑制 COD 葡萄糖醛酸化而引起的潜在药物相互作用。初步研究描述了人肝微粒体(HLM)中 COD-6-葡萄糖醛酸(C6G)形成的动力学,并证明在存在 2%牛血清白蛋白(BSA)的情况下孵育时,米氏常数(K m)(0.29 对 2.32 mM)降低了 88%。在筛选出的 13 种重组 UDP-葡糖醛酸基转移酶(UGT)酶中,只有 UGT2B4 和 UGT2B7 表现出 COD 葡萄糖醛酸化活性。在 BSA 存在下产生的相应 S(50)值(0.32 和 0.27 mM)与 HLM 中观察到的平均 K m 值相当。体外或体内已知的 UGT2B7 活性抑制剂以及作为含有 COD 的复合配方上市的药物,均被用于研究对 HLM 中 C6G 形成的抑制作用。抑制筛选确定了与右丙氧芬、氟康唑、酮康唑和美沙酮的潜在相互作用。为右丙氧芬(3.5 microM)、氟康唑(202 microM)、酮康唑(0.66 microM)和美沙酮(0.32 microM)生成的抑制剂常数值预测了体内 COD 的药物血浆浓度-时间曲线下面积比值增加 1.60 至 3.66 倍。尽管氟康唑和酮康唑对 UGT2B4 和 UGT2B7 催化的 COD 葡萄糖醛酸化的抑制作用相似,但右丙氧芬和美沙酮的抑制作用主要是由于对 UGT2B4 的影响。与右丙氧芬、氟康唑、酮康唑和美沙酮的相互作用可能会影响 COD 镇痛的强度和持续时间。