Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
Nanotechnology. 2010 Jun 18;21(24):245101. doi: 10.1088/0957-4484/21/24/245101. Epub 2010 May 20.
Mismatched base pairs, such as different conformations of the G.A mispair, cause only minor structural changes in the host DNA molecule, thereby making mispair recognition an arduous task. Electron transport in DNA that depends strongly on the hopping transfer integrals between the nearest base pairs, which in turn are affected by the presence of a mispair, might be an attractive approach in this regard. We report here on our investigations, via the I-V characteristics, of the effect of a mispair on the electrical properties of homogeneous and generic DNA molecules. The I-V characteristics of DNA were studied numerically within the double-stranded tight-binding model. The parameters of the tight-binding model, such as the transfer integrals and on-site energies, are determined from first-principles calculations. The changes in electrical current through the DNA chain due to the presence of a mispair depend on the conformation of the G.A mispair and are appreciable for DNA consisting of up to 90 base pairs. For homogeneous DNA sequences the current through DNA is suppressed and the strongest suppression is realized for the G(anti).A(syn) conformation of the G.A mispair. For inhomogeneous (generic) DNA molecules, the mispair result can be either a suppression or an enhancement of the current, depending on the type of mispairs and actual DNA sequence.
错配碱基对,如 G.A 错配的不同构象,仅会导致宿主 DNA 分子发生微小的结构变化,从而使得错配识别成为一项艰巨的任务。在这方面,电子在 DNA 中的传输可能是一种很有吸引力的方法,它强烈依赖于最近碱基对之间的跳跃转移积分,而这又受到错配的影响。在这里,我们通过 I-V 特性报告了我们对错配对均相和通用 DNA 分子电特性影响的研究。在双链紧束缚模型内,通过数值方法研究了 DNA 的 I-V 特性。紧束缚模型的参数,如转移积分和局域能,是根据第一性原理计算确定的。由于存在错配而导致的 DNA 链中电流的变化取决于 G.A 错配的构象,对于由多达 90 个碱基对组成的 DNA,这种变化是可观的。对于均相 DNA 序列,DNA 中的电流受到抑制,而对于 G(anti).A(syn) 构象的 G.A 错配,抑制作用最强。对于非均相(通用)DNA 分子,错配的结果可能是电流的抑制或增强,这取决于错配的类型和实际的 DNA 序列。