School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, CET Campus, Thiruvananthapuram-695016, Kerala, India.
J Phys Chem B. 2010 Nov 25;114(46):15311-8. doi: 10.1021/jp106732u. Epub 2010 Oct 28.
Stabilization of unstable mispairs on protonation in a DNA sequence can result in a change in the sequence conformation. Such sequences are being actively used for the synthesis of pH-driven molecular switches that have applications in biological pH sensing. We have studied various conformations of different mispairs of bases and their protonated forms using density functional theory (DFT) at B3LYP/6-31+G(d) and M05-2X/6-31+G(d,p) levels. Both gas-phase and aqueous-phase calculations are reported. Solvent phase calculations were done using the PCM and the COSMO solvation model. Our results show that the criterion for the protonation of a particular base in a mispair is not just its higher proton affinity. The planarity of the structure is significantly important, and a planar structure is energetically preferred over a bent mispair. Our calculations also show that the stabilization gained through protonation for the A-C, A-G, and the C-C mispairs is substantial (~20.0 kcal/mol); therefore, these are good candidates for pH-driven molecular switches.
在 DNA 序列中质子化时不稳定的错配碱基的稳定化可能导致序列构象的改变。这些序列正被积极用于合成 pH 驱动的分子开关,这些开关在生物 pH 传感中有应用。我们使用密度泛函理论(DFT)在 B3LYP/6-31+G(d)和 M05-2X/6-31+G(d,p)水平上研究了不同碱基错配及其质子化形式的各种构象。报告了气相和水相计算结果。使用 PCM 和 COSMO 溶剂化模型进行了溶剂相计算。我们的结果表明,错配中特定碱基质子化的标准不仅仅是其较高的质子亲和力。结构的平面性非常重要,平面结构在能量上优先于弯曲的错配。我们的计算还表明,通过质子化对 A-C、A-G 和 C-C 错配的稳定化作用非常显著(约 20.0 kcal/mol);因此,它们是 pH 驱动的分子开关的良好候选物。