Suppr超能文献

用于在高阶中心有限差分中实现边界条件的匹配界面与边界(MIB)。

Matched interface and boundary (MIB) for the implementation of boundary conditions in high-order central finite differences.

作者信息

Zhao Shan, Wei G W

机构信息

Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, U.S.A.

出版信息

Int J Numer Methods Eng. 2009 Mar 19;77(12):1690-1730. doi: 10.1002/nme.2473.

Abstract

High-order central finite difference schemes encounter great difficulties in implementing complex boundary conditions. This paper introduces the matched interface and boundary (MIB) method as a novel boundary scheme to treat various general boundary conditions in arbitrarily high-order central finite difference schemes. To attain arbitrarily high order, the MIB method accurately extends the solution beyond the boundary by repeatedly enforcing only the original set of boundary conditions. The proposed approach is extensively validated via boundary value problems, initial-boundary value problems, eigenvalue problems, and high-order differential equations. Successful implementations are given to not only Dirichlet, Neumann, and Robin boundary conditions, but also more general ones, such as multiple boundary conditions in high-order differential equations and time-dependent boundary conditions in evolution equations. Detailed stability analysis of the MIB method is carried out. The MIB method is shown to be able to deliver high-order accuracy, while maintaining the same or similar stability conditions of the standard high-order central difference approximations. The application of the proposed MIB method to the boundary treatment of other non-standard high-order methods is also considered.

摘要

高阶中心有限差分格式在实现复杂边界条件时遇到了很大困难。本文引入匹配界面与边界(MIB)方法作为一种新颖的边界格式,用于处理任意高阶中心有限差分格式中的各种一般边界条件。为了达到任意高阶,MIB方法通过仅反复施加原始边界条件集,将解精确地扩展到边界之外。通过边值问题、初边值问题、特征值问题和高阶微分方程对所提出的方法进行了广泛验证。不仅成功实现了狄利克雷、诺伊曼和罗宾边界条件,还实现了更一般的边界条件,如高阶微分方程中的多重边界条件和演化方程中的含时边界条件。对MIB方法进行了详细的稳定性分析。结果表明,MIB方法能够提供高阶精度,同时保持与标准高阶中心差分近似相同或相似的稳定性条件。还考虑了所提出的MIB方法在其他非标准高阶方法边界处理中的应用。

相似文献

2
Second order Method for Solving 3D Elasticity Equations with Complex Interfaces.
J Comput Phys. 2015 Aug 1;294:405-438. doi: 10.1016/j.jcp.2015.03.053.
3
MIB Galerkin method for elliptic interface problems.
J Comput Appl Math. 2014 Dec 15;272:195-220. doi: 10.1016/j.cam.2014.05.014.
4
Matched Interface and Boundary Method for Elasticity Interface Problems.
J Comput Appl Math. 2015 Sep 1;285:203-225. doi: 10.1016/j.cam.2015.02.005.
5
A Galerkin formulation of the MIB method for three dimensional elliptic interface problems.
Comput Math Appl. 2014 Oct 1;68(7):719-745. doi: 10.1016/j.camwa.2014.07.022.
6
Computational methods for optical molecular imaging.
Commun Numer Methods Eng. 2009;25(12):1137-1161. doi: 10.1002/cnm.1164.
7
MIB method for elliptic equations with multi-material interfaces.
J Comput Phys. 2011 Jun 1;230(12):4588-4615. doi: 10.1016/j.jcp.2011.02.037.
8
Absorbing boundary conditions for the time-dependent Schrödinger-type equations in R^{3}.
Phys Rev E. 2020 Jan;101(1-1):013304. doi: 10.1103/PhysRevE.101.013304.
9
Finite difference spectral collocation schemes for the solutions of boundary value problems.
Heliyon. 2023 Dec 7;10(1):e23453. doi: 10.1016/j.heliyon.2023.e23453. eCollection 2024 Jan 15.
10
Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients.
J Comput Phys. 2012 Feb 1;231(4):1440-1461. doi: 10.1016/j.jcp.2011.10.026. Epub 2011 Nov 6.

引用本文的文献

1
Calculation of electrostatic free energy for the nonlinear Poisson-Boltzmann model based on the dimensionless potential.
J Comput Phys. 2024 Jan 15;497. doi: 10.1016/j.jcp.2023.112634. Epub 2024 Nov 14.
2
Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents.
Front Mol Biosci. 2018 Mar 27;5:25. doi: 10.3389/fmolb.2018.00025. eCollection 2018.
3
A unified discontinuous Galerkin framework for time integration.
Math Methods Appl Sci. 2014 May 15;37(7):1042-1071. doi: 10.1002/mma.2863.
4
Mode decomposition evolution equations.
J Sci Comput. 2012 Mar 1;50(3):495-518. doi: 10.1007/s10915-011-9509-z.
5
MIB method for elliptic equations with multi-material interfaces.
J Comput Phys. 2011 Jun 1;230(12):4588-4615. doi: 10.1016/j.jcp.2011.02.037.
6
Second-order Poisson Nernst-Planck solver for ion channel transport.
J Comput Phys. 2011 Jun;230(13):5239-5262. doi: 10.1016/j.jcp.2011.03.020.
7
MIBPB: a software package for electrostatic analysis.
J Comput Chem. 2011 Mar;32(4):756-70. doi: 10.1002/jcc.21646. Epub 2010 Sep 15.
8
Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices.
J Comput Phys. 2010 Jun 20;229(12):4431-4460. doi: 10.1016/j.jcp.2010.02.002.

本文引用的文献

1
Local spectral time-domain method for electromagnetic wave propagation.
Opt Lett. 2003 Apr 1;28(7):513-5. doi: 10.1364/ol.28.000513.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验