Zhao Shan, Wei G W
Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, U.S.A.
Int J Numer Methods Eng. 2009 Mar 19;77(12):1690-1730. doi: 10.1002/nme.2473.
High-order central finite difference schemes encounter great difficulties in implementing complex boundary conditions. This paper introduces the matched interface and boundary (MIB) method as a novel boundary scheme to treat various general boundary conditions in arbitrarily high-order central finite difference schemes. To attain arbitrarily high order, the MIB method accurately extends the solution beyond the boundary by repeatedly enforcing only the original set of boundary conditions. The proposed approach is extensively validated via boundary value problems, initial-boundary value problems, eigenvalue problems, and high-order differential equations. Successful implementations are given to not only Dirichlet, Neumann, and Robin boundary conditions, but also more general ones, such as multiple boundary conditions in high-order differential equations and time-dependent boundary conditions in evolution equations. Detailed stability analysis of the MIB method is carried out. The MIB method is shown to be able to deliver high-order accuracy, while maintaining the same or similar stability conditions of the standard high-order central difference approximations. The application of the proposed MIB method to the boundary treatment of other non-standard high-order methods is also considered.
高阶中心有限差分格式在实现复杂边界条件时遇到了很大困难。本文引入匹配界面与边界(MIB)方法作为一种新颖的边界格式,用于处理任意高阶中心有限差分格式中的各种一般边界条件。为了达到任意高阶,MIB方法通过仅反复施加原始边界条件集,将解精确地扩展到边界之外。通过边值问题、初边值问题、特征值问题和高阶微分方程对所提出的方法进行了广泛验证。不仅成功实现了狄利克雷、诺伊曼和罗宾边界条件,还实现了更一般的边界条件,如高阶微分方程中的多重边界条件和演化方程中的含时边界条件。对MIB方法进行了详细的稳定性分析。结果表明,MIB方法能够提供高阶精度,同时保持与标准高阶中心差分近似相同或相似的稳定性条件。还考虑了所提出的MIB方法在其他非标准高阶方法边界处理中的应用。