Chakravorty Arghya, Jia Zhe, Peng Yunhui, Tajielyato Nayere, Wang Lisi, Alexov Emil
Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, SC, United States.
Department of Chemistry, Clemson University, Clemson, SC, United States.
Front Mol Biosci. 2018 Mar 27;5:25. doi: 10.3389/fmolb.2018.00025. eCollection 2018.
Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant) from the solvent phase (high dielectric constant). Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.
在基于泊松-玻尔兹曼的隐式溶剂模型框架下,用于模拟大分子溶剂化及其对结合作用影响的传统建模技术,利用几何定义的表面来描述大分子内部(低介电常数)与溶剂相(高介电常数)的分隔。尽管这种简化节省了时间和计算资源,且在不显著影响自由能计算准确性的情况下进行,但它忽略了溶质-溶剂界面的一些关键物理化学性质,例如水分子和界面处侧链柔韧性的改变,这分别导致了与 bulk 水和大分子内部不同的介电性质。在此,我们提出一种基于高斯的平滑介电模型,这是一种非均匀介电分布模型,它模拟了大分子柔韧性的影响并捕捉了表面结合水分子的改变性质。因此,该模型实现了介电性质从大分子内部到溶剂相的平滑过渡,消除了分隔两相的任何非物理表面。通过大分子结合作用的各种示例,我们展示了其效用,并说明了与传统双介电模型的比较。我们还展示了该模型的一些其他能力,即考虑溶液中电解质的影响以及呈现水在脂质膜上的分布轮廓。