Suppr超能文献

相似文献

1
Second-order Poisson Nernst-Planck solver for ion channel transport.
J Comput Phys. 2011 Jun;230(13):5239-5262. doi: 10.1016/j.jcp.2011.03.020.
2
Poisson-Boltzmann-Nernst-Planck model.
J Chem Phys. 2011 May 21;134(19):194101. doi: 10.1063/1.3581031.
3
Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012711. doi: 10.1103/PhysRevE.92.012711. Epub 2015 Jul 14.
4
Variational multiscale models for charge transport.
SIAM Rev Soc Ind Appl Math. 2012;54(4):699-754. doi: 10.1137/110845690. Epub 2012 Nov 8.
5
A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
J Comput Chem. 2013 Sep 15;34(24):2065-78. doi: 10.1002/jcc.23329. Epub 2013 Jun 5.
7
A stabilized finite volume element method for solving Poisson-Nernst-Planck equations.
Int J Numer Method Biomed Eng. 2022 Jan;38(1):e3543. doi: 10.1002/cnm.3543. Epub 2021 Nov 18.
8
MIB Galerkin method for elliptic interface problems.
J Comput Appl Math. 2014 Dec 15;272:195-220. doi: 10.1016/j.cam.2014.05.014.

引用本文的文献

1
Protein Transport through Nanopores Illuminated by Long-Time-Scale Simulations.
ACS Nano. 2021 Jun 22;15(6):9900-9912. doi: 10.1021/acsnano.1c01078. Epub 2021 Jun 7.
2
Molecular Mean-Field Theory of Ionic Solutions: A Poisson-Nernst-Planck-Bikerman Model.
Entropy (Basel). 2020 May 14;22(5):550. doi: 10.3390/e22050550.
3
Frontiers in biomolecular mesh generation and molecular visualization systems.
Vis Comput Ind Biomed Art. 2018 Sep 5;1(1):7. doi: 10.1186/s42492-018-0007-0.
4
Conic shapes have higher sensitivity than cylindrical ones in nanopore DNA sequencing.
Sci Rep. 2018 Jun 14;8(1):9097. doi: 10.1038/s41598-018-27517-8.
5
Hybrid finite element and Brownian dynamics method for charged particles.
J Chem Phys. 2016 Apr 28;144(16):164107. doi: 10.1063/1.4947086.
6
Object-oriented Persistent Homology.
J Comput Phys. 2016 Jan 15;305:276-299. doi: 10.1016/j.jcp.2015.10.036.
7
Matched Interface and Boundary Method for Elasticity Interface Problems.
J Comput Appl Math. 2015 Sep 1;285:203-225. doi: 10.1016/j.cam.2015.02.005.
8
Second order Method for Solving 3D Elasticity Equations with Complex Interfaces.
J Comput Phys. 2015 Aug 1;294:405-438. doi: 10.1016/j.jcp.2015.03.053.
9
Multiscale Multiphysics and Multidomain Models I: Basic Theory.
J Theor Comput Chem. 2013 Dec;12(8). doi: 10.1142/S021963361341006X.
10
A Galerkin formulation of the MIB method for three dimensional elliptic interface problems.
Comput Math Appl. 2014 Oct 1;68(7):719-745. doi: 10.1016/j.camwa.2014.07.022.

本文引用的文献

1
Finite-difference solution of the Poisson-Boltzmann equation: Complete elimination of self-energy.
J Comput Chem. 1996 Aug;17(11):1344-51. doi: 10.1002/(SICI)1096-987X(199608)17:11<1344::AID-JCC7>3.0.CO;2-M.
2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Differential geometry based solvation model I: Eulerian formulation.
J Comput Phys. 2010 Nov 1;229(22):8231-8258. doi: 10.1016/j.jcp.2010.06.036.
4
MIBPB: a software package for electrostatic analysis.
J Comput Chem. 2011 Mar;32(4):756-70. doi: 10.1002/jcc.21646. Epub 2010 Sep 15.
6
Immersed finite element method and its applications to biological systems.
Comput Methods Appl Mech Eng. 2006 Feb 15;195(13-16):1722-1749. doi: 10.1016/j.cma.2005.05.049.
7
Differential geometry based multiscale models.
Bull Math Biol. 2010 Aug;72(6):1562-622. doi: 10.1007/s11538-010-9511-x. Epub 2010 Feb 19.
9
Geometric and potential driving formation and evolution of biomolecular surfaces.
J Math Biol. 2009 Aug;59(2):193-231. doi: 10.1007/s00285-008-0226-7. Epub 2008 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验