Suppr超能文献

供体/受体吸附在金属氧化物纳米多孔薄膜的表面:不同电子转移途径的光谱探针。

Donor/Acceptor adsorbates on the surface of metal oxide nanoporous films: a spectroscopic probe for different electron transfer pathways.

机构信息

Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany.

出版信息

Chemphyschem. 2010 Jun 21;11(9):2027-35. doi: 10.1002/cphc.200900991.

Abstract

A composite model system which consists of a molecular donor/acceptor pair coupled to the surface of metal oxide nanoporous films is proposed to study the contribution of the surface trap states and their influence on the interfacial ET as well as charge trapping and spatial diffusion processes in films. The photophysics of this donor/acceptor system is investigated by time-resolved transient absorbance spectroscopy in the UV/Vis (347-675 nm) spectral region. Variation of the band gap allows one to disentangle the ET pathways. Adsorption of the donor/acceptor pair on the nonreactive Al(2)O(3) surface shows that coupling to the surface assists electron transfer between adsorbed donor and acceptor molecules, resulting in ultrafast intermolecular electron transfer of approximately 100 fs. On the other hand, a competition between interfacial and intermolecular electron transfer is observed for the donor/acceptor pair coupled to a reactive TiO(2) surface. The subsequent transfer of the conduction band electron to the electron acceptor is examined by monitoring the free charge carrier absorption in the mid-IR (approximately 5 microm) spectral region.

摘要

提出了一种由分子给体/受体对与金属氧化物纳米多孔薄膜表面耦合而成的复合模型体系,用于研究表面陷阱态的贡献及其对界面 ET 以及薄膜中电荷俘获和空间扩散过程的影响。通过在紫外/可见(347-675nm)光谱区域的时间分辨瞬态吸收光谱研究了该给体/受体体系的光物理性质。能带隙的变化允许人们分解 ET 途径。在非反应性 Al2O3 表面上吸附给体/受体对表明,与表面的耦合有助于吸附给体和受体分子之间的电子转移,从而导致大约 100fs 的超快分子间电子转移。另一方面,对于与反应性 TiO2 表面耦合的给体/受体对,观察到界面和分子间电子转移之间的竞争。通过监测中红外(约 5 微米)光谱区域中的自由载流子吸收,研究了导带电子向电子受体的后续转移。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验