Department of Microbiology, The University of Washington, Seattle, WA 98115, USA.
Mol Microbiol. 2010 Feb;75(4):1007-20. doi: 10.1111/j.1365-2958.2009.07037.x.
Purple non-sulphur phototrophic bacteria (PNSB) are excellent models for analysing the co-ordination of major metabolisms, including oxidative phosphorylation, photophosphorylation, carbon dioxide fixation and nitrogen fixation. In species studied to date, a two-component system called RegBA controls these functions and it has been thought that this redox sensing regulatory system is essential for co-ordinating electron flow and cannot be easily replaced. Here we show that this is not the case for all PNSB and that the oxygen-sensing FixLJ-K system, initially described in rhizobia, controls microaerobic respiration, photophosphorylation and other major metabolic traits in Rhodopseudomonas palustris. A R. palustris fixK mutant grew normally aerobically but was impaired in microaerobic growth. It was also severely impaired in photosynthetic growth. Transcriptome analyses indicated that FixK positively regulates haem and bacteriochlorophyll biosynthesis, cbb3 oxidase and NADH dehydrogenase genes, as well as genes for autotrophy and aromatic compound degradation. Purified FixK interacted with the promoters of a bacteriochlorophyll biosynthesis operon, a bacteriophytochrome-histidine kinase gene and the fnr-type regulatory gene, aadR. A FixK-AadR hierarchy mediates the transition from microaerobic to anaerobic growth. These results underscore that physiologically similar bacteria can use very different regulatory strategies to control common major metabolisms.
紫色非硫光合细菌(PNSB)是分析主要代谢物协同作用的优秀模型,包括氧化磷酸化、光合磷酸化、二氧化碳固定和氮固定。在迄今为止研究的物种中,一种称为 RegBA 的二组分系统控制着这些功能,人们认为这种氧化还原感应调节系统对于协调电子流是必不可少的,并且不容易被替代。在这里,我们表明并非所有 PNSB 都是如此,最初在根瘤菌中描述的氧气感应 FixLJ-K 系统控制着沼泽红假单胞菌的微氧呼吸、光合磷酸化和其他主要代谢特征。R. palustris fixK 突变体在有氧条件下正常生长,但在微氧生长中受到损害。它在光合生长中也受到严重损害。转录组分析表明,FixK 正向调节血红素和细菌叶绿素生物合成、cbb3 氧化酶和 NADH 脱氢酶基因,以及自养和芳香化合物降解基因。纯化的 FixK 与细菌叶绿素生物合成操纵子、细菌视紫红质组氨酸激酶基因和 fnr 型调节基因 aadR 的启动子相互作用。FixK-AadR 层次结构介导了从微氧到厌氧生长的转变。这些结果强调了生理相似的细菌可以使用非常不同的调节策略来控制共同的主要代谢物。