Laboratory of Building Physics, Department of Civil Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 40, 3001 Heverlee, Belgium.
J Biomech. 2010 Aug 26;43(12):2281-7. doi: 10.1016/j.jbiomech.2010.04.038. Epub 2010 May 21.
This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports.
本研究旨在评估计算流体动力学 (CFD) 在运动空气动力学中的应用精度,例如用于预测游泳者、自行车手或滑雪者的阻力,方法是通过详细的验证实验评估应用的数值建模技术。在本研究中,展示了一个关于自行车运动员比例模型(比例 1:2)的风洞实验。除了三分力和力矩外,还在比例模型表面(即 115 个位置)进行了高分辨率表面压力测量,以提供有关流场的详细信息。这些数据用于比较不同湍流建模技术的性能,例如稳态雷诺平均纳维-斯托克斯 (RANS),以及几个 k-epsilon 和 k-omega 湍流模型,以及非稳态大涡模拟 (LES),以及边界层建模技术,即壁面函数和低雷诺数建模 (LRNM)。模拟使用商业 CFD 代码 Fluent 6.3 进行。RANS 剪切应力输运 (SST) k-omega 模型表现出最佳的整体性能,其次是计算成本更高的 LES。此外,与壁面函数相比,LRNM 明显更适合模拟边界层。本研究表明,与运动中 CFD 研究中常用的标准 k-epsilon 模型与壁面函数相结合相比,评估钝体周围流动的 CFD 有更准确的替代方案。