Suppr超能文献

世界级轮椅短跑运动员在划臂周期关键阶段的空气动力学变化:数值模拟分析。

The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis.

机构信息

Department of Sport Sciences, University of Beira Interior, Covilhã, Portugal.

Research Centre in Sports, Health and Human Development, Covilhã, Portugal.

出版信息

PLoS One. 2018 Feb 28;13(2):e0193658. doi: 10.1371/journal.pone.0193658. eCollection 2018.

Abstract

Biomechanics plays an important role helping Paralympic sprinters to excel, having the aerodynamic drag a significant impact on the athlete's performance. The aim of this study was to assess the aerodynamics in different key-moments of the stroke cycle by Computational Fluid Dynamics. A world-ranked wheelchair sprinter was scanned on the racing wheelchair wearing his competition gear and helmet. The sprinter was scanned in three different positions: (i) catch (hands in the 12h position on the hand-rim); (ii) the release (hands in the 18h position on the hand-rim) and; (iii) recovery phase (hands do not touch the hand-rim and are hyperextended backwards). The simulations were performed at 2.0, 3.5, 5.0 and 6.5 m/s. The mean viscous and pressure drag components, total drag force and effective area were retrieved after running the numerical simulations. The viscous drag ranged from 3.35 N to 2.94 N, pressure drag from 0.38 N to 5.51 N, total drag force from 0.72 N to 8.45 N and effective area from 0.24 to 0.41 m2. The results pointed out that the sprinter was submitted to less drag in the recovery phase, and higher drag in the catch. These findings suggest the importance of keeping an adequate body alignment to avoid an increase in the drag force.

摘要

生物力学在帮助残奥会短跑运动员取得优异成绩方面发挥着重要作用,空气动力阻力对运动员的表现有重大影响。本研究的目的是通过计算流体动力学评估划水周期不同关键时刻的空气动力学。扫描了一位世界级轮椅短跑运动员,他在比赛轮椅上穿着比赛装备和头盔。运动员在三个不同位置进行扫描:(i)抓水(手在把手的 12 点钟位置);(ii)出水(手在把手的 18 点钟位置);和;(iii)恢复阶段(手不接触把手,向后过度伸展)。模拟在 2.0、3.5、5.0 和 6.5 m/s 下进行。在运行数值模拟后,获得了平均粘性阻力和压力阻力分量、总阻力和有效面积。粘性阻力在 3.35 N 到 2.94 N 之间,压力阻力在 0.38 N 到 5.51 N 之间,总阻力在 0.72 N 到 8.45 N 之间,有效面积在 0.24 到 0.41 m2 之间。结果表明,运动员在恢复阶段受到的阻力较小,在抓水阶段受到的阻力较大。这些发现表明保持适当的身体姿势以避免阻力增加的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dfb/5831413/9a66d1c7d57f/pone.0193658.g001.jpg

相似文献

2
The impact of arm-crank position on the drag of a paralympic hand-cyclist.
Comput Methods Biomech Biomed Engin. 2019 Mar;22(4):386-395. doi: 10.1080/10255842.2018.1558217. Epub 2019 Feb 18.
3
Aerodynamic investigation of tucked positions in alpine skiing.
J Biomech. 2021 Apr 15;119:110327. doi: 10.1016/j.jbiomech.2021.110327. Epub 2021 Mar 1.
5
Wheelchair propulsion biomechanics: implications for wheelchair sports.
Sports Med. 2001;31(5):339-67. doi: 10.2165/00007256-200131050-00005.
6
Numerical simulations of a swimmer's head and cap wearing different types of goggles.
Sports Biomech. 2024 Sep;23(9):1123-1135. doi: 10.1080/14763141.2021.1923793. Epub 2021 Jun 3.
7
Aerodynamic study of time-trial helmets in cycling racing using CFD analysis.
J Biomech. 2018 Jan 23;67:1-8. doi: 10.1016/j.jbiomech.2017.10.042. Epub 2017 Nov 8.
8
Assessment of passive drag in swimming by numerical simulation and analytical procedure.
J Sports Sci. 2018 Mar;36(5):492-498. doi: 10.1080/02640414.2017.1321774. Epub 2017 Apr 28.
9
10
Analysis of Cyclist's Drag on the Aero Position Using Numerical Simulations and Analytical Procedures: A Case Study.
Int J Environ Res Public Health. 2020 May 14;17(10):3430. doi: 10.3390/ijerph17103430.

引用本文的文献

3
Assessment of Able-Bodied and Amputee Cyclists' Aerodynamics by Computational Fluid Dynamics.
Front Bioeng Biotechnol. 2021 Mar 11;9:644566. doi: 10.3389/fbioe.2021.644566. eCollection 2021.
5
Estimation of an Elite Road Cyclist Performance in Different Positions Based on Numerical Simulations and Analytical Procedures.
Front Bioeng Biotechnol. 2020 May 29;8:538. doi: 10.3389/fbioe.2020.00538. eCollection 2020.
7
Analysis of Cyclist's Drag on the Aero Position Using Numerical Simulations and Analytical Procedures: A Case Study.
Int J Environ Res Public Health. 2020 May 14;17(10):3430. doi: 10.3390/ijerph17103430.

本文引用的文献

1
Correction: A Comparison of Experimental and Analytical Procedures to Measure Passive Drag in Human Swimming.
PLoS One. 2017 May 1;12(5):e0177038. doi: 10.1371/journal.pone.0177038. eCollection 2017.
2
Cyclist drag in team pursuit: influence of cyclist sequence, stature, and arm spacing.
J Biomech Eng. 2014 Jan;136(1):011005. doi: 10.1115/1.4025792.
3
Aerodynamic drag in cycling: methods of assessment.
Sports Biomech. 2011 Sep;10(3):197-218. doi: 10.1080/14763141.2011.592209.
5
Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests.
J Biomech. 2010 May 7;43(7):1262-8. doi: 10.1016/j.jbiomech.2010.01.025. Epub 2010 Feb 20.
6
Swimming propulsion forces are enhanced by a small finger spread.
J Appl Biomech. 2010 Feb;26(1):87-92. doi: 10.1123/jab.26.1.87.
7
The accuracy of computational fluid dynamics analysis of the passive drag of a male swimmer.
Sports Biomech. 2007 Jan;6(1):81-98. doi: 10.1080/14763140601058581.
8
Aerodynamic characteristics as determinants of the drafting effect in cycling.
Med Sci Sports Exerc. 2007 Jan;39(1):170-6. doi: 10.1249/01.mss.0000239400.85955.12.
9
Modeling sprint cycling using field-derived parameters and forward integration.
Med Sci Sports Exerc. 2006 Mar;38(3):592-7. doi: 10.1249/01.mss.0000193560.34022.04.
10
The science of cycling: factors affecting performance - part 2.
Sports Med. 2005;35(4):313-37. doi: 10.2165/00007256-200535040-00003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验