MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
Biochem Soc Trans. 2010 Jun;38(3):817-22. doi: 10.1042/BST0380817.
Peroxisomes are eukaryotic organelles with crucial functions in development. Plant peroxisomes participate in various metabolic processes, some of which are co-operated by peroxisomes and other organelles, such as mitochondria and chloroplasts. Defining the complete picture of how these essential organelles divide and proliferate will be instrumental in understanding how the dynamics of peroxisome abundance contribute to changes in plant physiology and development. Research in Arabidopsis thaliana has identified several evolutionarily conserved major components of the peroxisome division machinery, including five isoforms of PEROXIN11 proteins (PEX11), two dynamin-related proteins (DRP3A and DRP3B) and two FISSION1 proteins (FIS1A/BIGYIN and FIS1B). Recent studies in our laboratory have also begun to uncover plant-specific factors. DRP5B is a dual-localized protein that is involved in the division of both chloroplasts and peroxisomes, representing an invention of the plant/algal lineage in organelle division. In addition, PMD1 (peroxisomal and mitochondrial division 1) is a plant-specific protein tail anchored to the outer surface of peroxisomes and mitochondria, mediating the division and/or positioning of these organelles. Lastly, light induces peroxisome proliferation in dark-grown Arabidopsis seedlings, at least in part, through activating the PEX11b gene. The far-red light receptor phyA (phytochrome A) and the transcription factor HYH (HY5 homologue) are key components in this signalling pathway. In summary, pathways for the division and proliferation of plant peroxisomes are composed of conserved and plant-specific factors. The sharing of division proteins by peroxisomes, mitochondria and chloroplasts is also suggesting possible co-ordination in the division of these metabolically associated plant organelles.
过氧化物酶体是真核生物细胞器,在发育过程中具有至关重要的功能。植物过氧化物酶体参与各种代谢过程,其中一些过程是由过氧化物酶体与其他细胞器(如线粒体和叶绿体)共同合作完成的。定义这些基本细胞器如何分裂和增殖的完整图景,对于理解过氧化物酶体丰度的动态如何影响植物生理学和发育变化将是至关重要的。拟南芥的研究已经确定了过氧化物酶体分裂机制的几个进化保守的主要成分,包括五种 PEROXIN11 蛋白(PEX11)同工型、两种与 dynamin 相关的蛋白(DRP3A 和 DRP3B)和两种 FISSION1 蛋白(FIS1A/BIGYIN 和 FIS1B)。我们实验室的最新研究也开始揭示植物特有的因素。DRP5B 是一种双重定位的蛋白,参与叶绿体和过氧化物酶体的分裂,代表了细胞器分裂中植物/藻类谱系的发明。此外,PMD1(过氧化物酶体和线粒体分裂 1)是一种植物特异性蛋白,锚定在外过氧化物酶体和线粒体的表面,介导这些细胞器的分裂和/或定位。最后,光至少部分通过激活 PEX11b 基因诱导黑暗生长的拟南芥幼苗中过氧化物酶体的增殖。远红光受体 phyA(phytochrome A)和转录因子 HYH(HY5 同源物)是该信号通路中的关键组成部分。总之,植物过氧化物酶体的分裂和增殖途径由保守和植物特异性因素组成。过氧化物酶体、线粒体和叶绿体共享分裂蛋白,这也表明这些代谢相关的植物细胞器在分裂过程中可能存在协调作用。