Suppr超能文献

微生物热失活动力学的随机和确定性模型。

Stochastic and deterministic model of microbial heat inactivation.

机构信息

Inst. de Tecnología, Facultad de Ingeniería y Ciencias Exactas, Univ. Argentina de la Empresa, Cdad. de Buenos Aires, Argentina.

出版信息

J Food Sci. 2010 Mar;75(2):R59-70. doi: 10.1111/j.1750-3841.2009.01494.x.

Abstract

Microbial inactivation is described by a model based on the changing survival probabilities of individual cells or spores. It is presented in a stochastic and discrete form for small groups, and as a continuous deterministic model for larger populations. If the underlying mortality probability function remains constant throughout the treatment, the model generates first-order ("log-linear") inactivation kinetics. Otherwise, it produces survival patterns that include Weibullian ("power-law") with upward or downward concavity, tailing with a residual survival level, complete elimination, flat "shoulder" with linear or curvilinear continuation, and sigmoid curves. In both forms, the same algorithm or model equation applies to isothermal and dynamic heat treatments alike. Constructing the model does not require assuming a kinetic order or knowledge of the inactivation mechanism. The general features of its underlying mortality probability function can be deduced from the experimental survival curve's shape. Once identified, the function's coefficients, the survival parameters, can be estimated directly from the experimental survival ratios by regression. The model is testable in principle but matching the estimated mortality or inactivation probabilities with those of the actual cells or spores can be a technical challenge. The model is not intended to replace current models to calculate sterility. Its main value, apart from connecting the various inactivation patterns to underlying probabilities at the cellular level, might be in simulating the irregular survival patterns of small groups of cells and spores. In principle, it can also be used for nonthermal methods of microbial inactivation and their combination with heat.

摘要

微生物失活是通过基于个体细胞或孢子存活概率变化的模型来描述的。它以小群体的随机离散形式和大群体的连续确定性模型呈现。如果在整个处理过程中潜在的死亡率函数保持不变,则该模型产生一级(“对数线性”)失活动力学。否则,它会产生包括 Weibullian(“幂律”)的生存模式,具有向上或向下的凹度、具有残留存活水平的尾部、完全消除、具有线性或曲线延续的平坦“肩部”以及 S 形曲线。在这两种形式中,相同的算法或模型方程适用于等温处理和动态热处理。构建模型不需要假设动力学顺序或失活机制的知识。其潜在死亡率函数的一般特征可以从实验生存曲线的形状推断出来。一旦确定,该函数的系数,即生存参数,可以通过回归直接从实验生存比中估计。该模型在原则上是可测试的,但将估计的死亡率或失活概率与实际细胞或孢子的死亡率或失活概率匹配可能是一个技术挑战。该模型不是为了替代目前用于计算无菌性的模型。除了将各种失活动力学模式与细胞水平的潜在概率联系起来之外,它的主要价值可能在于模拟小群体细胞和孢子的不规则生存模式。原则上,它也可用于微生物非热失活方法及其与热的组合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验