Suppr超能文献

全基因组表达将希瓦氏菌属的电子传递途径与趋化作用联系起来。

Genome-wide expression links the electron transfer pathway of Shewanella oneidensis to chemotaxis.

机构信息

Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan.

出版信息

BMC Genomics. 2010 May 21;11:319. doi: 10.1186/1471-2164-11-319.

Abstract

BACKGROUND

By coupling the oxidation of organic substrates to a broad range of terminal electron acceptors (such as nitrate, metals and radionuclides), Shewanella oneidensis MR-1 has the ability to produce current in microbial fuel cells (MFCs). omcA, mtrA, omcB (also known as mtrC), mtrB, and gspF are some known genes of S. oneidensis MR-1 that participate in the process of electron transfer. How does the cell coordinate the expression of these genes? To shed light on this problem, we obtain the gene expression datasets of MR-1 that are recently public-accessible in Gene Expression Omnibus. We utilize the novel statistical method, liquid association (LA), to investigate the complex pattern of gene regulation.

RESULTS

Through a web of information obtained by our data analysis, a network of transcriptional regulatory relationship between chemotaxis and electron transfer pathways is revealed, highlighting the important roles of the chemotaxis gene cheA-1, the magnesium transporter gene mgtE-1, and a triheme c-type cytochrome gene SO4572.

CONCLUSION

We found previously unknown relationship between chemotaxis and electron transfer using LA system. The study has the potential of helping researchers to overcome the intrinsic metabolic limitation of the microorganisms for improving power density output of an MFC.

摘要

背景

希瓦氏菌属(Shewanella oneidensis)MR-1 能够将有机底物的氧化与广泛的末端电子受体(如硝酸盐、金属和放射性核素)结合,从而在微生物燃料电池(MFC)中产生电流。omcA、mtrA、omcB(也称为 mtrC)、mtrB 和 gspF 是希瓦氏菌属 MR-1 中参与电子传递过程的一些已知基因。细胞如何协调这些基因的表达?为了解决这个问题,我们从最近在基因表达综合数据库(Gene Expression Omnibus)中公开获取的希瓦氏菌属 MR-1 的基因表达数据集。我们利用新的统计方法液体关联(LA)来研究基因调控的复杂模式。

结果

通过我们数据分析获得的信息网络,揭示了趋化作用和电子传递途径之间转录调控关系的网络,突出了趋化基因 cheA-1、镁转运基因 mgtE-1 和三血红素 c 型细胞色素基因 SO4572 的重要作用。

结论

我们使用 LA 系统发现了趋化作用和电子传递之间以前未知的关系。这项研究有可能帮助研究人员克服微生物内在的代谢限制,提高 MFC 的功率密度输出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d32a/2886065/4fb451cb9d8f/1471-2164-11-319-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验