Suppr超能文献

希瓦氏菌还原碘酸盐所需的金属还原和蛋白分泌基因。

Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis.

机构信息

School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.

Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA.

出版信息

Appl Environ Microbiol. 2019 Jan 23;85(3). doi: 10.1128/AEM.02115-18. Print 2019 Feb 1.

Abstract

The metal-reducing gammaproteobacterium reduces iodate (IO) as an anaerobic terminal electron acceptor. Microbial IO electron transport pathways are postulated to terminate with nitrate (NO) reductase, which reduces IO as an alternative electron acceptor. Recent studies with , however, have demonstrated that NO reductase is not involved in IO reduction. The main objective of the present study was to determine the metal reduction and protein secretion genes required for IO reduction by with lactate, formate, or H as the electron donor. With all electron donors, the type I and type V protein secretion mutants retained wild-type IO reduction activity, while the type II protein secretion mutant lacking the outer membrane secretin GspD was impaired in IO reduction. Deletion mutants lacking the cyclic AMP receptor protein (CRP), cytochrome maturation permease CcmB, and inner membrane-tethered -type cytochrome CymA were impaired in IO reduction with all electron donors, while deletion mutants lacking -type cytochrome MtrA and outer membrane β-barrel protein MtrB of the outer membrane MtrAB module were impaired in IO reduction with only lactate as an electron donor. With all electron donors, mutants lacking the -type cytochromes OmcA and MtrC of the metal-reducing extracellular electron conduit MtrCAB retained wild-type IO reduction activity. These findings indicate that IO reduction by involves electron donor-dependent metal reduction and protein secretion pathway components, including the outer membrane MtrAB module and type II protein secretion of an unidentified IO reductase to the outer membrane. Microbial iodate (IO) reduction is a major component in the biogeochemical cycling of iodine and the bioremediation of iodine-contaminated environments; however, the molecular mechanism of microbial IO reduction is poorly understood. Results of the present study indicate that outer membrane (type II) protein secretion and metal reduction genes encoding the outer membrane MtrAB module of the extracellular electron conduit MtrCAB are required for IO reduction by On the other hand, the metal-reducing -type cytochrome MtrC of the extracellular electron conduit is not required for IO reduction by These findings indicate that the IO electron transport pathway terminates with an as yet unidentified IO reductase that associates with the outer membrane MtrAB module to deliver electrons extracellularly to IO

摘要

金属还原γ-变形菌 将碘酸盐 (IO) 还原为厌氧末端电子受体。微生物 IO 电子传递途径被假定以硝酸盐 (NO) 还原酶为终点,后者将 IO 还原为替代电子受体。然而,最近对 的研究表明,NO 还原酶不参与 IO 还原。本研究的主要目的是确定利用乳酸盐、甲酸盐或 H 作为电子供体还原 IO 时所需的金属还原和蛋白分泌基因。对于所有电子供体,I 型和 V 型蛋白分泌突变体保留了野生型 IO 还原活性,而缺乏外膜分泌蛋白 GspD 的 II 型蛋白分泌突变体在 IO 还原中受损。缺乏环腺苷酸受体蛋白 (CRP)、细胞色素成熟渗透酶 CcmB 和内膜连接的 -型细胞色素 CymA 的缺失突变体在所有电子供体中还原 IO 时受损,而缺乏外膜 MtrAB 模块的外膜 β-桶蛋白 MtrB 和 -型细胞色素 MtrA 的缺失突变体在仅以乳酸盐作为电子供体时还原 IO 时受损。对于所有电子供体,缺乏金属还原细胞外电子导管 MtrCAB 的 -型细胞色素 OmcA 和 MtrC 的突变体保留了野生型 IO 还原活性。这些发现表明, 对 IO 的还原涉及电子供体依赖性的金属还原和蛋白分泌途径成分,包括外膜 MtrAB 模块和对 外膜的未鉴定 IO 还原酶的 II 型蛋白分泌。微生物碘酸盐 (IO) 还原是碘的生物地球化学循环和碘污染环境生物修复的主要组成部分;然而,微生物 IO 还原的分子机制知之甚少。本研究结果表明,细胞外电子导管的外膜 (II 型) 蛋白分泌和编码外膜 MtrAB 模块的金属还原基因是 还原 IO 所必需的。另一方面,细胞外电子导管的金属还原 -型细胞色素 MtrC 并不需要 还原 IO。这些发现表明,IO 电子传递途径的末端是一个尚未鉴定的 IO 还原酶,它与外膜 MtrAB 模块结合,将电子体外传递到 IO 上。

相似文献

1
Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis.
Appl Environ Microbiol. 2019 Jan 23;85(3). doi: 10.1128/AEM.02115-18. Print 2019 Feb 1.
2
Iodate Reduction by Requires Genes Encoding an Extracellular Dimethylsulfoxide Reductase.
Front Microbiol. 2022 Apr 14;13:852942. doi: 10.3389/fmicb.2022.852942. eCollection 2022.
3
Electron transport and protein secretion pathways involved in Mn(III) reduction by Shewanella oneidensis.
Environ Microbiol Rep. 2014 Oct;6(5):490-500. doi: 10.1111/1758-2229.12173.
4
Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila.
Appl Environ Microbiol. 2018 Nov 15;84(23). doi: 10.1128/AEM.02134-18. Print 2018 Dec 1.
5
Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
Appl Environ Microbiol. 2016 Aug 15;82(17):5428-43. doi: 10.1128/AEM.01615-16. Print 2016 Sep 1.
6
7
The operon encodes an essential and modular electron transfer pathway for extracellular iodate reduction by MR-1.
Microbiol Spectr. 2024 Aug 6;12(8):e0051224. doi: 10.1128/spectrum.00512-24. Epub 2024 Jun 25.
10
Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1.
Front Microbiol. 2012 Feb 15;3:50. doi: 10.3389/fmicb.2012.00050. eCollection 2012.

引用本文的文献

1
The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism.
Infect Immun. 2024 Aug 13;92(8):e0020724. doi: 10.1128/iai.00207-24. Epub 2024 Jul 9.
2
Microbial involvement in iodine cycle: mechanisms and potential applications.
Front Bioeng Biotechnol. 2023 Oct 30;11:1279270. doi: 10.3389/fbioe.2023.1279270. eCollection 2023.
3
Integration of molecular and computational approaches paints a holistic portrait of obscure metabolisms.
mBio. 2023 Dec 19;14(6):e0043123. doi: 10.1128/mbio.00431-23. Epub 2023 Oct 19.
4
Global occurrence of the bacteria with capability for extracellular reduction of iodate.
Front Microbiol. 2022 Nov 25;13:1070601. doi: 10.3389/fmicb.2022.1070601. eCollection 2022.
5
Bromate reduction by MR-1 is mediated by dimethylsulfoxide reductase.
Front Microbiol. 2022 Aug 30;13:955249. doi: 10.3389/fmicb.2022.955249. eCollection 2022.
6
Transcriptome analysis provides new insights into the tolerance and aerobic reduction of Shewanella decolorationis Ni1-3 to bromate.
Appl Microbiol Biotechnol. 2022 Jun;106(12):4749-4761. doi: 10.1007/s00253-022-12006-w. Epub 2022 Jun 16.
7
Iodate Reduction by Requires Genes Encoding an Extracellular Dimethylsulfoxide Reductase.
Front Microbiol. 2022 Apr 14;13:852942. doi: 10.3389/fmicb.2022.852942. eCollection 2022.
8
Isolation of Anaerobic Bromate-Reducing Bacteria Using Different Carbon Sources and Transcriptomic Insights From Glu3.
Front Microbiol. 2022 Mar 29;13:851844. doi: 10.3389/fmicb.2022.851844. eCollection 2022.
10
The Cyclic AMP Receptor Protein, Crp, Is Required for the Decolorization of Acid Yellow 36 in CN32.
Front Microbiol. 2020 Dec 9;11:596372. doi: 10.3389/fmicb.2020.596372. eCollection 2020.

本文引用的文献

2
Iodate and nitrate transformation by Agrobacterium/Rhizobium related strain DVZ35 isolated from contaminated Hanford groundwater.
J Hazard Mater. 2018 May 15;350:19-26. doi: 10.1016/j.jhazmat.2018.02.006. Epub 2018 Feb 6.
3
Mechanisms of Bacterial Extracellular Electron Exchange.
Adv Microb Physiol. 2016;68:87-138. doi: 10.1016/bs.ampbs.2016.02.002. Epub 2016 Mar 24.
4
Electron transport and protein secretion pathways involved in Mn(III) reduction by Shewanella oneidensis.
Environ Microbiol Rep. 2014 Oct;6(5):490-500. doi: 10.1111/1758-2229.12173.
5
Radioiodine Biogeochemistry and Prevalence in Groundwater.
Crit Rev Environ Sci Technol. 2014 Oct 18;44(20):2287-2335. doi: 10.1080/10643389.2013.828273.
6
Identification of a molecular signature unique to metal-reducing Gammaproteobacteria.
FEMS Microbiol Lett. 2014 Jan;350(1):90-9. doi: 10.1111/1574-6968.12304. Epub 2013 Nov 5.
7
Determination of iodide, iodate and organo-iodine in waters with a new total organic iodine measurement approach.
Water Res. 2013 Nov 1;47(17):6660-9. doi: 10.1016/j.watres.2013.08.039. Epub 2013 Sep 12.
8
Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals.
Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6346-51. doi: 10.1073/pnas.1220074110. Epub 2013 Mar 28.
9
Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget.
Environ Sci Technol. 2013 Apr 2;47(7):3091-8. doi: 10.1021/es304460k. Epub 2013 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验