Suppr超能文献

单腿支撑期蹲姿中肌肉对支撑和行进的贡献。

Muscle contributions to support and progression during single-limb stance in crouch gait.

机构信息

Departments of Mechanical Engineering, Clark Center, Stanford University, Stanford, CA 94305-5450, United States.

出版信息

J Biomech. 2010 Aug 10;43(11):2099-105. doi: 10.1016/j.jbiomech.2010.04.003. Epub 2010 May 20.

Abstract

Pathological movement patterns like crouch gait are characterized by abnormal kinematics and muscle activations that alter how muscles support the body weight during walking. Individual muscles are often the target of interventions to improve crouch gait, yet the roles of individual muscles during crouch gait remain unknown. The goal of this study was to examine how muscles contribute to mass center accelerations and joint angular accelerations during single-limb stance in crouch gait, and compare these contributions to unimpaired gait. Subject-specific dynamic simulations were created for ten children who walked in a mild crouch gait and had no previous surgeries. The simulations were analyzed to determine the acceleration of the mass center and angular accelerations of the hip, knee, and ankle generated by individual muscles. The results of this analysis indicate that children walking in crouch gait have less passive skeletal support of body weight and utilize substantially higher muscle forces to walk than unimpaired individuals. Crouch gait relies on the same muscles as unimpaired gait to accelerate the mass center upward, including the soleus, vasti, gastrocnemius, gluteus medius, rectus femoris, and gluteus maximus. However, during crouch gait, these muscles are active throughout single-limb stance, in contrast to the modulation of muscle forces seen during single-limb stance in an unimpaired gait. Subjects walking in crouch gait rely more on proximal muscles, including the gluteus medius and hamstrings, to accelerate the mass center forward during single-limb stance than subjects with an unimpaired gait.

摘要

病理运动模式,如蹲伏步态,其特点是运动学和肌肉活动异常,改变了肌肉在行走过程中支撑体重的方式。个体肌肉通常是干预措施的目标,以改善蹲伏步态,但个体肌肉在蹲伏步态中的作用仍然未知。本研究的目的是研究在蹲伏步态中单腿支撑期间肌肉如何有助于质心加速度和关节角加速度,并将这些贡献与未受损步态进行比较。为十个患有轻度蹲伏步态且以前没有接受过手术的儿童创建了特定于个体的动态模拟。对模拟进行了分析,以确定由单个肌肉产生的质心加速度和髋关节、膝关节和踝关节的角加速度。该分析的结果表明,患有蹲伏步态的儿童的体重被动骨骼支撑较少,并且与未受损个体相比,他们需要使用更高的肌肉力量来行走。蹲伏步态依赖于与未受损步态相同的肌肉来向上加速质心,包括比目鱼肌、股四头肌、腓肠肌、臀中肌、股直肌和臀大肌。然而,在蹲伏步态中,这些肌肉在单腿支撑期间一直处于活跃状态,与未受损步态中单腿支撑期间肌肉力量的调节形成对比。与未受损步态相比,患有蹲伏步态的受试者在单腿支撑期间更多地依赖于近端肌肉,包括臀中肌和腘绳肌,来向前加速质心。

相似文献

1
Muscle contributions to support and progression during single-limb stance in crouch gait.
J Biomech. 2010 Aug 10;43(11):2099-105. doi: 10.1016/j.jbiomech.2010.04.003. Epub 2010 May 20.
2
Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait.
Gait Posture. 2013 May;38(1):86-91. doi: 10.1016/j.gaitpost.2012.10.019. Epub 2012 Nov 27.
4
Potential of lower-limb muscles to accelerate the body during cerebral palsy gait.
Gait Posture. 2012 Jun;36(2):194-200. doi: 10.1016/j.gaitpost.2012.02.014. Epub 2012 Apr 21.
5
Compressive tibiofemoral force during crouch gait.
Gait Posture. 2012 Apr;35(4):556-60. doi: 10.1016/j.gaitpost.2011.11.023. Epub 2011 Dec 27.
6
How much muscle strength is required to walk in a crouch gait?
J Biomech. 2012 Oct 11;45(15):2564-9. doi: 10.1016/j.jbiomech.2012.07.028. Epub 2012 Sep 5.
7
Ankle and knee coupling in patients with spastic diplegia: effects of gastrocnemius-soleus lengthening.
J Bone Joint Surg Am. 2002 May;84(5):736-44. doi: 10.2106/00004623-200205000-00006.
8
Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait.
J Biomech. 2008;41(5):960-7. doi: 10.1016/j.jbiomech.2008.01.002. Epub 2008 Mar 4.
9
Individual muscle force-energy rate is altered during crouch gait: A neuro-musculoskeletal evaluation.
J Biomech. 2022 Jun;139:111141. doi: 10.1016/j.jbiomech.2022.111141. Epub 2022 May 17.
10
The effect of excessive tibial torsion on the capacity of muscles to extend the hip and knee during single-limb stance.
Gait Posture. 2007 Oct;26(4):546-52. doi: 10.1016/j.gaitpost.2006.12.003. Epub 2007 Jan 16.

引用本文的文献

4
Soft tissue can absorb surprising amounts of energy during knee exoskeleton use.
J R Soc Interface. 2024 Dec;21(221):20240539. doi: 10.1098/rsif.2024.0539. Epub 2024 Dec 4.
6
Invasiveness of decompression surgery affects modeled lumbar spine kinetics in patients with degenerative spondylolisthesis.
Front Bioeng Biotechnol. 2024 Jan 8;11:1281119. doi: 10.3389/fbioe.2023.1281119. eCollection 2023.
9
Comparison of biomechanical analysis results using different musculoskeletal models for children with cerebral palsy.
Front Bioeng Biotechnol. 2023 Sep 26;11:1217918. doi: 10.3389/fbioe.2023.1217918. eCollection 2023.
10
Musculoskeletal model of osseointegrated transfemoral amputees in OpenSim.
PLoS One. 2023 Sep 28;18(9):e0288864. doi: 10.1371/journal.pone.0288864. eCollection 2023.

本文引用的文献

1
Walking function, pain, and fatigue in adults with cerebral palsy: a 7-year follow-up study.
Dev Med Child Neurol. 2009 May;51(5):381-8. doi: 10.1111/j.1469-8749.2008.03250.x. Epub 2008 Feb 3.
2
A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2009 Apr;17(2):167-75. doi: 10.1109/TNSRE.2009.2014235. Epub 2009 Feb 3.
3
Muscle contributions to support and progression over a range of walking speeds.
J Biomech. 2008 Nov 14;41(15):3243-52. doi: 10.1016/j.jbiomech.2008.07.031. Epub 2008 Sep 25.
4
An investigation of the action of the hamstring muscles during standing in crouch using functional electrical stimulation (FES).
Gait Posture. 2008 Oct;28(3):372-7. doi: 10.1016/j.gaitpost.2008.05.007. Epub 2008 Jun 25.
5
Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait.
J Biomech. 2008;41(5):960-7. doi: 10.1016/j.jbiomech.2008.01.002. Epub 2008 Mar 4.
6
OpenSim: open-source software to create and analyze dynamic simulations of movement.
IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50. doi: 10.1109/TBME.2007.901024.
7
In vivo measurement of dynamic rectus femoris function at postures representative of early swing phase.
J Biomech. 2008;41(1):137-44. doi: 10.1016/j.jbiomech.2007.07.011. Epub 2007 Aug 17.
8
An exploration of the function of the triceps surae during normal gait using functional electrical stimulation.
Gait Posture. 2007 Oct;26(4):482-8. doi: 10.1016/j.gaitpost.2006.12.001. Epub 2007 Jan 16.
9
A baseline of dynamic muscle function during gait.
Gait Posture. 2006 Feb;23(2):211-21. doi: 10.1016/j.gaitpost.2005.02.004.
10
Muscles that support the body also modulate forward progression during walking.
J Biomech. 2006;39(14):2623-30. doi: 10.1016/j.jbiomech.2005.08.017. Epub 2005 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验