Department of Infectious Diseases, New Drug Discovery Research, Ranbaxy Research Laboratories, R & D III, Plot 20, Sector 18, Udyog Vihar, Gurgaon 122 001, Haryana, India.
Int J Antimicrob Agents. 2010 Aug;36(2):169-74. doi: 10.1016/j.ijantimicag.2010.03.026. Epub 2010 May 20.
Resistance to macrolides and beta-lactams has increased sharply amongst key respiratory pathogens, leading to major concern. A novel series of acylides was designed to overcome this resistance and was evaluated for in vitro and in vivo activity. This series of acylides was designed starting from clarithromycin by changing the substitution on the desosamine nitrogen, followed by conversion to 3-O-acyl and 11,12-carbamate. Minimum inhibitory concentrations (MICs) of acylides were determined against susceptible as well as macrolide-lincosamide-streptogramin B (MLS(B))--and penicillin-resistant Streptococcus pneumoniae, Streptococcus pyogenes and Moraxella catarrhalis by the agar dilution method. Microbroth MICs for Haemophilus influenzae were determined according to Clinical and Laboratory Standards Institute guidelines. In vivo efficacy was determined by target organ load reduction against S. pneumoniae 3579 (ermB). The bactericidal potential of promising acylides was also determined. MICs of these compounds against S. pneumoniae, S. pyogenes, H. influenzae and M. catarrhalis were in the range of 0.06-2, 0.125-1, 1-16 and 0.015-0.5 microg/mL, respectively, irrespective of their resistance pattern. Mycoplasma pneumoniae and Legionella pneumophila showed MIC ranges of 0.004-0.125 microg/mL and 0.004-0.03 microg/mL, respectively. The acylides also showed better activity against telithromycin-resistant S. pneumoniae strains. Compounds with a 4-furan-2-yl-1H-imidazolyl side chain on the carbamate (RBx 10000296) showed a target organ load reduction of >3 log(10) colony-forming units/mL and concentration-dependent bactericidal potential against S. pneumoniae 994 mefA and H. influenzae strains. This novel and potent series of acylides active against antibiotic-resistant respiratory pathogens should be further investigated.
耐大环内酯类和β-内酰胺类抗生素药物的主要呼吸道病原体急剧增加,引起了极大的关注。设计了一系列新型酰基化合物以克服这种耐药性,并评估了它们的体外和体内活性。该系列酰基化合物是从克拉霉素开始设计的,通过改变脱氧氨基糖上的取代基,然后转化为 3-O-酰基和 11,12-氨基甲酸酯。采用琼脂稀释法测定酰基化合物对敏感以及大环内酯类-林可酰胺类-链阳性菌素 B(MLS(B))-和青霉素耐药肺炎链球菌、化脓性链球菌和卡他莫拉菌的最低抑菌浓度(MIC)。根据临床和实验室标准协会指南测定流感嗜血杆菌的微量肉汤 MIC。通过减少肺炎链球菌 3579(ermB)对目标器官的负荷来确定体内疗效。还测定了有前途的酰基化合物的杀菌潜力。这些化合物对肺炎链球菌、化脓性链球菌、流感嗜血杆菌和卡他莫拉菌的 MIC 分别在 0.06-2、0.125-1、1-16 和 0.015-0.5μg/mL 范围内,无论其耐药模式如何。肺炎支原体和嗜肺军团菌的 MIC 范围分别为 0.004-0.125μg/mL 和 0.004-0.03μg/mL。酰基化合物对耐红霉素肺炎链球菌株也表现出更好的活性。在氨基甲酸酯上带有 4-呋喃-2-基-1H-咪唑基侧链的化合物(RBx 10000296)对肺炎链球菌 994 mefA 和流感嗜血杆菌菌株显示出>3 对数 10 个菌落形成单位/mL 的目标器官负荷减少和浓度依赖性杀菌潜力。这种新型、有效对抗抗生素耐药性呼吸道病原体的酰基化合物系列应进一步研究。