Suppr超能文献

通过对噬菌体 T4 DNA 聚合酶的突变分析鉴定 B 族 DNA 聚合酶中的新模体。

Identification of a new motif in family B DNA polymerases by mutational analyses of the bacteriophage t4 DNA polymerase.

机构信息

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.

出版信息

J Mol Biol. 2010 Jul 16;400(3):295-308. doi: 10.1016/j.jmb.2010.05.030. Epub 2010 May 21.

Abstract

Structure-based protein sequence alignments of family B DNA polymerases revealed a conserved motif that is formed from interacting residues between loops from the N-terminal and palm domains and between the N-terminal loop and a conserved proline residue. The importance of the motif for function of the bacteriophage T4 DNA polymerase was revealed by suppressor analysis. T4 DNA polymerases that form weak replicating complexes cannot replicate DNA when the dGTP pool is reduced. The conditional lethality provides the means to identify amino acid substitutions that restore replication activity under low-dGTP conditions either by correcting the defect produced by the first amino acid substitution or by generally increasing the stability of polymerase complexes; the second type are global suppressors that can effectively counter the reduced stability caused by a variety of amino acid substitutions. Some amino acid substitutions that increase the stability of polymerase complexes produce a new phenotype-sensitivity to the antiviral drug phosphonoacetic acid. Amino acid substitutions that confer decreased ability to replicate DNA under low-dGTP conditions or drug sensitivity were identified in the new motif, which suggests that the motif functions in regulating the stability of polymerase complexes. Additional suppressor analyses revealed an apparent network of interactions that link the new motif to the fingers domain and to two patches of conserved residues that bind DNA. The collection of mutant T4 DNA polymerases provides a foundation for future biochemical studies to determine how DNA polymerases remain stably associated with DNA while waiting for the next available dNTP, how DNA polymerases translocate, and the biochemical basis for sensitivity to antiviral drugs.

摘要

基于结构的 B 族 DNA 聚合酶的蛋白质序列比对揭示了一个保守基序,该基序由 N 端和手掌结构域之间的环以及 N 端环与保守脯氨酸残基之间相互作用的残基形成。噬菌体 T4 DNA 聚合酶中该基序对于功能的重要性通过抑制分析揭示。形成弱复制复合物的 T4 DNA 聚合酶在 dGTP 池减少时不能复制 DNA。条件致死性提供了一种识别氨基酸取代的方法,这些取代可以在低 dGTP 条件下恢复复制活性,要么通过纠正第一个氨基酸取代产生的缺陷,要么通过普遍增加聚合酶复合物的稳定性;第二类是全局抑制剂,可以有效地对抗由各种氨基酸取代引起的稳定性降低。一些增加聚合酶复合物稳定性的氨基酸取代产生了一个新的表型——对抗病毒药物膦甲酸钠的敏感性。在新基序中鉴定出了在低 dGTP 条件下复制 DNA 的能力降低或对药物敏感的氨基酸取代,这表明该基序在调节聚合酶复合物的稳定性方面起作用。额外的抑制分析揭示了一个明显的相互作用网络,将新基序与手指结构域和与 DNA 结合的两个保守残基斑块联系起来。突变 T4 DNA 聚合酶的集合为未来的生化研究提供了基础,以确定 DNA 聚合酶如何在等待下一个可用的 dNTP 时保持与 DNA 的稳定结合、DNA 聚合酶如何易位以及对抗病毒药物敏感的生化基础。

相似文献

1
Identification of a new motif in family B DNA polymerases by mutational analyses of the bacteriophage t4 DNA polymerase.
J Mol Biol. 2010 Jul 16;400(3):295-308. doi: 10.1016/j.jmb.2010.05.030. Epub 2010 May 21.
3
New Insights into DNA Polymerase Function Revealed by Phosphonoacetic Acid-Sensitive T4 DNA Polymerases.
Chem Res Toxicol. 2017 Nov 20;30(11):1984-1992. doi: 10.1021/acs.chemrestox.7b00132. Epub 2017 Sep 15.
8
DNA polymerase of the T4-related bacteriophages.
Prog Nucleic Acid Res Mol Biol. 2000;64:65-96. doi: 10.1016/s0079-6603(00)64002-3.

引用本文的文献

1
Efficient Genome Editing with Chimeric Oligonucleotide-Directed Editing.
bioRxiv. 2024 Jul 10:2024.07.09.602710. doi: 10.1101/2024.07.09.602710.
2
DNA polymerase ε and δ variants drive mutagenesis in polypurine tracts in human tumors.
Cell Rep. 2024 Jan 23;43(1):113655. doi: 10.1016/j.celrep.2023.113655. Epub 2024 Jan 13.
3
Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches.
Bioengineering (Basel). 2023 Sep 30;10(10):1150. doi: 10.3390/bioengineering10101150.
4
Identification of probable inhibitors for the DNA polymerase of the Monkeypox virus through the virtual screening approach.
Int J Biol Macromol. 2023 Feb 28;229:515-528. doi: 10.1016/j.ijbiomac.2022.12.252. Epub 2022 Dec 28.
5
John W. (Jan) Drake: A Biochemical View of a Geneticist .
Genetics. 2020 Dec;216(4):827-836. doi: 10.1534/genetics.120.303813.
6
Fidelity of DNA replication-a matter of proofreading.
Curr Genet. 2018 Oct;64(5):985-996. doi: 10.1007/s00294-018-0820-1. Epub 2018 Mar 2.
7
Switching between polymerase and exonuclease sites in DNA polymerase ε.
Nucleic Acids Res. 2015 Jan;43(2):932-42. doi: 10.1093/nar/gku1353. Epub 2014 Dec 30.
8
Structural insights into eukaryotic DNA replication.
Front Microbiol. 2014 Aug 25;5:444. doi: 10.3389/fmicb.2014.00444. eCollection 2014.
9
Engineering processive DNA polymerases with maximum benefit at minimum cost.
Front Microbiol. 2014 Aug 4;5:380. doi: 10.3389/fmicb.2014.00380. eCollection 2014.

本文引用的文献

1
Structural insight into translesion synthesis by DNA Pol II.
Cell. 2009 Dec 24;139(7):1279-89. doi: 10.1016/j.cell.2009.11.043.
2
Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta.
Nat Struct Mol Biol. 2009 Sep;16(9):979-86. doi: 10.1038/nsmb.1663. Epub 2009 Aug 30.
3
DNA polymerase proofreading: Multiple roles maintain genome stability.
Biochim Biophys Acta. 2010 May;1804(5):1049-63. doi: 10.1016/j.bbapap.2009.06.012. Epub 2009 Jun 21.
4
Loading clamps for DNA replication and repair.
DNA Repair (Amst). 2009 May 1;8(5):570-8. doi: 10.1016/j.dnarep.2008.12.014. Epub 2009 Feb 11.
5
Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus.
Int J Biol Macromol. 2008 May 1;42(4):356-61. doi: 10.1016/j.ijbiomac.2008.01.010. Epub 2008 Feb 12.
6
Clustal W and Clustal X version 2.0.
Bioinformatics. 2007 Nov 1;23(21):2947-8. doi: 10.1093/bioinformatics/btm404. Epub 2007 Sep 10.
8
Kinetics of error generation in homologous B-family DNA polymerases.
Nucleic Acids Res. 2006 May 10;34(9):2528-35. doi: 10.1093/nar/gkl300. Print 2006.
9
Crystal structure of the herpes simplex virus 1 DNA polymerase.
J Biol Chem. 2006 Jun 30;281(26):18193-200. doi: 10.1074/jbc.M602414200. Epub 2006 Apr 24.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验