Department of Biological Sciences, University of Alberta Edmonton, AB, Canada.
Trevigen, Inc., Gaithersburg, MD USA.
Front Microbiol. 2014 Aug 4;5:380. doi: 10.3389/fmicb.2014.00380. eCollection 2014.
DNA polymerases need to be engineered to achieve optimal performance for biotechnological applications, which often require high fidelity replication when using modified nucleotides and when replicating difficult DNA sequences. These tasks are achieved for the bacteriophage T4 DNA polymerase by replacing leucine with methionine in the highly conserved Motif A sequence (L412M). The costs are minimal. Although base substitution errors increase moderately, accuracy is maintained for templates with mono- and dinucleotide repeats while replication efficiency is enhanced. The L412M substitution increases intrinsic processivity and addition of phage T4 clamp and single-stranded DNA binding proteins further enhance the ability of the phage T4 L412M-DNA polymerase to replicate all types of difficult DNA sequences. Increased pyrophosphorolysis is a drawback of increased processivity, but pyrophosphorolysis is curbed by adding an inorganic pyrophosphatase or divalent metal cations, Mn(2+) or Ca(2+). In the absence of pyrophosphorolysis inhibitors, the T4 L412M-DNA polymerase catalyzed sequence-dependent pyrophosphorolysis under DNA sequencing conditions. The sequence specificity of the pyrophosphorolysis reaction provides insights into how the T4 DNA polymerase switches between nucleotide incorporation, pyrophosphorolysis and proofreading pathways. The L-to-M substitution was also tested in the yeast DNA polymerases delta and alpha. Because the mutant DNA polymerases displayed similar characteristics, we propose that amino acid substitutions in Motif A have the potential to increase processivity and to enhance performance in biotechnological applications. An underlying theme in this chapter is the use of genetic methods to identify mutant DNA polymerases with potential for use in current and future biotechnological applications.
需要对 DNA 聚合酶进行工程改造,以实现生物技术应用的最佳性能,当使用修饰的核苷酸和复制困难的 DNA 序列时,通常需要高保真度的复制。通过在高度保守的基序 A 序列(L412M)中用蛋氨酸替换亮氨酸,可以实现噬菌体 T4 DNA 聚合酶的这些任务。成本最低。虽然碱基取代错误略有增加,但对于具有单核苷酸和二核苷酸重复的模板,准确性得以维持,而复制效率得到增强。L412M 取代增加了内在的延伸性,并且添加噬菌体 T4 夹和单链 DNA 结合蛋白进一步增强了噬菌体 T4 L412M-DNA 聚合酶复制所有类型困难 DNA 序列的能力。增加焦磷酸解是延伸性增加的一个缺点,但是通过添加无机焦磷酸酶或二价金属阳离子 Mn(2+)或 Ca(2+)可以抑制焦磷酸解。在没有焦磷酸解抑制剂的情况下,T4 L412M-DNA 聚合酶在 DNA 测序条件下催化序列依赖性焦磷酸解。焦磷酸解反应的序列特异性提供了有关 T4 DNA 聚合酶如何在核苷酸掺入、焦磷酸解和校对途径之间切换的见解。该 L 到 M 的替换也在酵母 DNA 聚合酶 delta 和 alpha 中进行了测试。由于突变 DNA 聚合酶表现出相似的特征,因此我们提出基序 A 中的氨基酸替换具有增加延伸性和增强生物技术应用性能的潜力。本章的一个主题是使用遗传方法鉴定具有在当前和未来生物技术应用中潜在用途的突变 DNA 聚合酶。